
Page 1/3/Users/rstull/Sites/a507-local/ADM/hw/hw-images/ppm.py
Saved: 4/7/24, 3:13:39 PM Printed for: Roland Stull

Thanks to Andrew Loeppky and Ruth Moore for sharing their python codes for ppm. 1
I also copied the two import commands, which would apear first in the full program 2
 3
import numpy as np 4
import matplotlib.pyplot as plt 5
 6
What follows is just the ppm advection code, defined as a python function. 7
It still needs to be inserted into your own program to set up the grids, 8
arrays, initial conditions C, and the loop over all timesteps. 9
I added the in-line comments from my R code to Andrew's & Ruth's python code 10
 11
Note that a significant difference between R and python is that I started my 12
R arrays at index = 1, while Andrew started his python arrays at index = 0. 13
 14
Note that I found a bug in my R code, which I think was copied as a bug into the 15
codes by Andrew and Ruth. I think I fixed it here, but let me know if errors. 16
 17
For definitions of variables that are not given in this code fragment, please 18
see our cmaq homework assignment for ppm advection. 19
R. Stull, 7 Apr 2024. Univ. of British Columbia. 20
 21
 22
 23
def ppm(C, u, delt): 24
 25
 # Create values for key constants 26
 sixth = 1 / 6 27
 two3rds = 2 / 3 28
 oneoverdelx = 1 / delx 29
 30
 # Allocate the vectors 31
 imax = len(C) # avoid using global variable imax by reassigning 32
 dc = np.ones(imax) # nominal difference in concentration across a cell 33
 clfirst = np.ones(imax) # first guess of conc at left edge of cell i 34
 cr = np.ones(imax) # conc at right edge of cell i 35
 cl = np.ones(imax) # conc at left edge of cell i 36
 c6 = np.ones(imax) # corresponds to parabola parameter a6 of CW eq.(1.4) 37
 FL = np.ones(imax) # pollutant flux into the left side of a grid cell 38
 twoFR = np.ones(imax) # pollutant flux into the right side of a grid cell 39
 40
 # To guarantee that solution is monotonic, check that the left edge of cell i 41
 # (which is between cells i and i-1) should not have a concentration lower 42
 # or higher than the concentrations in those two neighboring cells 43
 # Namely, is clfirst between c[i] and c[i-1]. If not, then fix. 44
 for i in range(1, imax - 1): # for each interior grid point i 45
 del_cl = C[i] - C[i - 1] # concentration difference with cell at left 46
 del_cr = C[i + 1] - C[i] # concentration difference with cell at right 47
 dc[i] = 0.5 * (del_cl + del_cr) # 1st guess of avg conc difference across cell i 48
 49
 if (del_cl * del_cr) > 0.0: # then revise average difference across cell i 50
 dc[i] = np.sign(dc[i]) * min(abs(dc[i]), 2 * abs(del_cl), 2 * abs(del_cr)) 51
 else: 52
 dc[i] = 0 # for the special case of constant conc across cell 53
 54
 # First guess for concentration at left edge of each cell, using revised dc value 55
 for i in range(1, imax - 1): # for each interior grid point i 56
 clfirst[i] = 0.5 * (C[i] + C[i - 1]) - sixth * (dc[i] - dc[i - 1]) 57
 58
 # find parameters for the piecewise-continuous parabola in cell i 59
 for i in range(1, imax - 1): # for each interior grid point i 60
 # conc at the right edge (cr) of cell i equals concen at left edge of cell i+1 61
 cr[i] = clfirst[i + 1] # concentration at right edge of cell i 62
 cl[i] = clfirst[i] # concentration at left edge of cell i 63
 64
 # Check whether cell i is an extremum (is a peak or valley in the conc plot) 65

Page 2/3/Users/rstull/Sites/a507-local/ADM/hw/hw-images/ppm.py
Saved: 4/7/24, 3:13:39 PM Printed for: Roland Stull

 if ((cr[i] - C[i]) * (C[i] - cl[i])) > 0: # then not extremum 66
 # Find the two coefficients of the parabola: dc and c6: 67
 dc[i] = cr[i] - cl[i] # updated concen diff. between right & left edges 68
 c6[i] = 6 * (C[i] - 0.5 * (cl[i] + cr[i])) 69
 70
 if (dc[i] * c6[i]) > (dc[i] * dc[i]): # then adjust for overshoot at left edge 71
 cl[i] = 3.0 * C[i] - 2.0 * cr[i] 72
 elif (-dc[i] * dc[i]) > (dc[i] * c6[i]): # then adjust for overshoot at right 73
 cr[i] = 3.0 * C[i] - 2.0 * cl[i] 74
 75
 # if extremum, assume constant value instead of a parabola 76
 else: # For an extremum, don't use a parabola. 77
 cl[i] = C[i] # Instead, assume concen is constant across the cell, 78
 cr[i] = cl[i] # Thus, left and right concentrations equal average conc. 79
 80
 # second guess of coefficients for the parabola, from CW eq. (1.5) 81
 dc[i] = cr[i] - cl[i] 82
 c6[i] = 6.0 * (C[i] - 0.5 * (cl[i] + cr[i])) 83
 84
 # end of grid-point (i) loop 85
 86
 # Initialize to 0 the fluxes into the left and right sides of every cell i 87
 # assign fluxes from left and right sides 88
 FL = np.zeros(imax + 1) 89
 FR = np.zeros(imax + 1) 90
 91
 # Next, use parabolic fits within each cell to calculate the fluxes betweeen cells 92
 93
 # At left side of whole domain (i = 0), assume constant flux. Use FR[0] = FR[1] 94
 # wind from left, do BCs 95
 if u > 0.0: # if wind enters left boundary of domain 96
 y4 = u * delt # distance traversed by wind during delt 97
 x4 = y4 * oneoverdelx # Courant number is fraction of grid cell traversed 98
 # Find the flux leaving the right side of left boundary cell 99
 # Assume flux is parabolic in x 100
 FR[0] = y4 * (cr[1] - 0.5 * x4 * (dc[1] - c6[1] * (1.0 - two3rds * x4))) 101
 102
 # In interior of whole domain, use parabola eqs. CW (1.12) to find the fluxes 103
 # do the upwinding given local wind direction 104
 for i in range(1, imax - 1): # for each interior grid point i 105
 if u < 0: # for wind from right to left 106
 y4 = -u * delt # distance traversed by wind during delt 107
 x4 = y4 * oneoverdelx # Courant number is fraction of grid cell traversed 108
 # Assume parabolic in x 109
 FL[i] = y4 * (cl[i] + 0.5 * x4 * (dc[i] + c6[i] * (1.0 - two3rds * x4))) 110
 111
 if u > 0.0: # for wind from left to right 112
 y4 = u * delt # distance traversed by wind during delt 113
 x4 = y4 * oneoverdelx # Courant number is fraction of grid cell traversed 114
 # Assume parabolic in x 115
 FR[i] = y4 * (cr[i] - 0.5 * x4 * (dc[i] - c6[i] * (1.0 - two3rds * x4))) 116
 117
 # end of loop over all interior grid cells 118
 119
 # At right side of whole domain(i = imax), assume const.flux.Use FL[imax] = FL[imax-1] 120
 if u < 0: # if wind enters right boundary of domain 121
 y4 = -u * delt # distance traversed by wind during delt 122
 x4 = y4 * oneoverdelx # Courant number is fraction of grid cell traversed 123
 FL[imax] = y4 * (124
 cl[imax - 1] 125
 + 0.5 * x4 * (dc[imax - 1] + c6[imax - 1] * (1.0 - two3rds * x4)) 126
) 127
 128
For a realistic case, you would want to impose the actual fluxes at the boundaries. 129
But for our simple HW,impose boundary conditions of 0 pollutant flux entering the domain. 130

Page 3/3/Users/rstull/Sites/a507-local/ADM/hw/hw-images/ppm.py
Saved: 4/7/24, 3:13:39 PM Printed for: Roland Stull

 if u > 0.0: 131
 FR[0] = 0.0 132
 if u < 0.0: 133
 FL[imax] = 0.0 134
 135
 136
Update the concentrations in each grid cell. *** This is the forecast equation.*** 137
 # apply the forecast eqn to interior and get new concentration C 138
 for i in range(1, (imax - 1)): 139
 C[i] = C[i] + oneoverdelx * (FR[i - 1] - FR[i] + FL[i + 1] - FL[i]) 140
 141
 return C 142
 143

