HYSPLIT

The Hybrid Single-Particle Lagrangian Integrated Trajectory model

OVERVIEW — DAY 1

Part 1: Meteorology

- Getting data
- Converting data
- User-Entered Data Try it yourself
- Examining data

Part 2: Trajectory

- Set-up
- Equations
- Error
- Case Study (Simple Scenario and Absolute Error Example)
- Apply

METEOROLOGY – GETTING DATA

	Meteorology	Trajectory	Concentration	Advanced
	<u>Heccore</u>	HYSP	-	
Forecast	ARL Data FTP	An integrated sys	stem for computing entration, and Deposition	1
Appended	Convert to ARL	Rese	et	Help
Archive	Display Data	•		
Set Server	Utilities			

Forecast: forecast model starting today and looking 1-7 days into the future.

>Appended: forecast model starting1-2 days ago to present day.

>Archive: HYSPLIT meteorological data archives from various datasets.

> Reanalysis: special archive of the NCAR/NCEP global reanalysis dataset.

>Set Server: menu to set options for FTP (file transfer protocol).

METEOROLOGY – GETTING DATA

- FTP can be blocked by IT practices for the computer you are working with .
- •Data can also be downloaded to your computer via the HYSPLIT website.

https://www.ready.noaa.gov/HYSPLIT.php

HYSPLIT-compatible Meteorological Data

- NOAA ARL Archived Data
- NOAA NCEP Forecast Data Operational NOMADS Server
- NOAA ARL Forecast Data FTP Server
- University of Alaska Fairbanks GDAS Archive FTP server

METEOROLOGY - CONVERTING DATA

 Converting data can be done by navigating to:

METEOROLOGY→CONVERT TO ARL→*

- The GUI has options to convert:
 - WRF/ARW: (Advanced Weather Research model output is in NetCDF and can only be done on UNIX).
 - **Global**: (GRIB-1) from NOAA and ECMWF (PC & UNIX).
 - ECMWF ERA: (GRIB-1) from ECWMF global reanalysis project (PC & UNIX).
 - User-Entered: covered next.

-	
vert one NetCDF WRF-ARW output file to ARL format. Multiple time pe tained in one file. Single time period files must be manually conca	-
Set the WRF-ARW input file name	
Output path: C:/hysplit/working	
Output File: ARW2110	
Quit Help Process Data	
	6

METEOROLOGY — USER-ENTERED DATA

	Menus of Hysplit		<u></u>		×		Ø E	nter M	eteor.			[×
	Meteorology	Trajectory	Concentration	Advance	ed	Ye	ear M	on Day	Hour	Min	Dir	Spd	MixLaye	r Stab
-	ARL Data FTP		IT tem for computing ntration, and Deposition	n (]	21	LO 18	09	41	270	5.0	1500.0	4
WRF-ARW	Convert to ARL	Reset	t	Help										
Global Lat-Lon	Display Data				100									
ECMWF ERA	Utilities 🕨		the second			i l								
User entered	Meteorology Help			(- approx			Qu	it	Repe	eat	Sa	ve Dat	ta to Fi	le

- Enter one observation point for several time periods.
- Makes a spatially homogenous dataset.
- 10km resolution for a 250km by 250km domain

USER-ENTERED DATA — TRY IT YOURSELF

- Enter the first row of data
- Click **REPEAT** to fill in all other rows
- •Manually change the day and time
- •Click SAVE DATA TO FILE and then QUIT
- •Click RUN CONVERT

Year	Mon	Day	Hour	Min	Dir	Spd	MixLayer S	Stab
83	09	25	12	00	225	6.0	1500.0 3	
83	09	25	18	00	225	6.0	1500.0 3	
83	09	26	00	00	225	6.0	1500.0 3	
83	09	26	06	00	225	6.0	1500.0 3	
83	09	26	12	00	225	6.0	1500.0 3	
83	09	26	18	00	225	6.0	1500.0 3	
9	Quit		Repe	eat	Sa	ve Da	ta to File	

Ø	Create Single Station Meteorology File	_	×
loc	eate an ARL packed meteorological data file at 1 km resolution for user entere eation for one or more time periods. Required input includes wind direction, s ubility, defined by categores 1 (unstable) through 7 (stable).		
	Meteorological Data Input File:		
	Latitude: 40.0 Longitude: -90.0		
	stndata.txt Select file Create file		
	Processed Data Output File:		
	stndata.bin Select file Run convert		
	Could He la		

USER-ENTERED DATA — TRY IT YOURSELF

Next go to METEOROLOGY → DISPLAY DATA → TEXT PROFILE

- Select the file you just created in the menu (*stndata.bin*).
- Keep everything else as default.
- Click RUN PROFILE to get the sounding.

SIMULATION LOG - 🗆 ×	
METEOROLOGICAL PROFILE LISTING	~
Meteorological Profile: stndata.bin	
File start time : 83 9 25 12 0	
File ending time: 83 9 26 18 0	
Profile Time: 83 9 25 12 0	
Used Nearest Grid Point (13, 13) to Lat: 40.00, Lon:	
2D Fields	
PRSS	
hPa	
1013 1013	
3D Fields	
HGTS TEMP UWND VWND UVAR VVAR WVAR TPOT W	
m oC m/s m/s oK	
Exit	
< >	\sim

Meteorological Data Data Profile	—		\times
Displays a text meteorological data profile (file:profile.txt) for an ARL format (zeros) to grid center location for the first time period.	tted data	set.	Defaults
Set File Name of ARL format Data			
C:/hysplit/working stndata.bin]		
Wind Display: O Vector 🖲 Polar			
Time offset (hrs): © 0 C 2 C 3 C 6 C 12 C 24 C 48			
Time increment (hrs): © 0 C 1 C 2 C 3 C 6 C 12 C 24			
Profile Location Lat: 0.0 Lon: 0.0			
Quit Help Run PROFILE			

9

METEOROLOGY - EXAMINING DATA

 To get more details about a meteorological file go to:

METEOROLOGY → DISPLAY DATA→CHECK FILE

• And then select the file of interest.

	G			_	_	×	
METEOROLOGICAL DATA LI	ISTIN	G					
Enter meteorological	dire	ctory					÷.
Enter meteorological	file	name	•••				
File start time:	83	9	25	0	0		
File ending time:	83	á	28	23	ñ		
The change chao.			20	20	Ŭ		
Last record number :29	9760						
Record length bytes:	62	90					
Meteo data model : A	WRF						
Grid size x,y,z :	80	78	34				
Vertical coordinate:							
First forecast hour:	18						
Last forecast hour :	41						
Records per time :	310						
		Exit	5				
<						>	V

	Menus of Hyspli	t		
	Meteorology	Trajectory	<u>C</u> oncentration	Advanced
	ARL Data FTP	- HYSPL An integrated sys ectories, Air Conce	IT tem for computing ntration, and Depositio	n
and the second se	Convert to ARL	Rese		Нејр
Check File	Display Data	- The second		
Contour Map	Utilities			
Text Profile	Meteorology Help			
Grid Domain	The second second			
Meteorological Data	Information			$ \Box$ \times
	contents of a HYSPLI chkfile.txt. Displayi			
	Set File	Name of ARL format	Data	
	C:/Tutorial/captex	capt	tex2_wrf27uw.bin	

Run File Progra

Help

PART 2: TRAJECTORY

TRAJECTORY — SET-UP

Trajectory Setup	—		×
Starting time (YY MM DD HH [mm]):	00 00 00 00)	
Number of starting locations: 3 ====>	Setup star	ting loca	tions
Total run time (hrs) Direction II Official Function	Top of mo 100	del (m ag 00.0	J1)
Vertical Motion Method: 0 = input mod	del data	Sele	ect
Output (/path/file): ./tdump		Bro	wse
Add Meteorology Files Clear	Selected	Files: 1	
Quit Help Save as	Retrieve	Sa	ive

Menus of Hysp	lit	<u>17</u>	· 🗆	\times
Meteorology	<u>T</u> rajectory	<u>Concentration</u>	Adv	vanced
	Quick Start	n for computing ation, and Deposition	'n	
Exit	Setup Run		Help	
	Run Model			
	Display 🕨	E		
	Utilities 🕨			
	Special Runs			
	Trajectory Help			

• To access the Trajectory model go to:

TRAJECTORY \rightarrow SETUP RUN

• Here you can select various options which we will cover in the next few slides.

TRAJECTORY SET-UP - OPTIONS

Within the trajectory setup menu you can specify:

- The **start time** of your trajectory (this MUST be within your met data domain).
- The number of starting locations.
- Lat/lon and height of the starting location (i.e. where the pollutant is being injected from).

🖉 Ve.

- Total run time
- Direction (forwards/backwards)
- Top of model for your setup.
- The vertical motion method.
- The **Meteorological file**.
- Name of your **output file.**
- Save your setting preferences.
- Retrieve past saved setups.

🖉 Starting	g Loca		[\times
	t up 1 St ude Longi	-		
Location 1	: 40.0 -9	0.0	10.0	List
	Quit		ок	

*Round up/down to the closest hour rather than using minutes. If you do choose to use minutes: ensure the integration time-step is consistent with the start time.

	Trajectory Setup	_	
	Starting time (YY MM DD HH [mm]):	00 00 00 00	
	Number of starting locations: 3 ====>	Setup starti	ing locations
– 🗆 🗙	Total run time (hrs) Direction	Top of mode	
ertical Motion Method	12 © Fwrd C Back	10000	1.0
0 = input model data	Vertical Motion Method: 0 = input mo	del data	Select
1 = isobaric			
2 = isentropic	Output (/path/file): ./tdump		Browse
3 = constant density	Add Meteorology Files Clear	Selected F	liles: 1
4 = isosigma		oct1618.BIN	· · · · · · · · · · · · · · · · · · ·
5 = from divergence			
6 = remap MSL to AGL			
7 = average data			
8 = damped magnitude			
неір ОК	Quit Help Save as	Retrieve	Save

TRAJECTORY — EQUATIONS

- Particles and puffs are computed as the 3-D velocity vectors at the initial-position P(t) and first guess position P'(t+ Δ t). Velocity vectors are interpolated in both space and time.
- First guess position:

```
\mathsf{P'}(\mathsf{t}{+}\Delta\mathsf{t}) = \mathsf{P}(\mathsf{t}) + \mathsf{V}(\mathsf{P}{,}\mathsf{t}) \,\Delta\mathsf{t}
```

• Final position:

$\mathsf{P}(\mathsf{t}{+}\Delta\mathsf{t}) = \mathsf{P}(\mathsf{t}) + 0.5 \left[\mathsf{V}(\mathsf{P}{,}\mathsf{t}) + \mathsf{V}(\mathsf{P}{'}{,}\mathsf{t}{+}\Delta\mathsf{t}) \right] \Delta\mathsf{t}.$

• Δt can vary during the simulation, and is calculated to fill the requirement that the advection distance per time-step is less than the grid spacing:

$U_{max}(grid-units min^{-1}) \Delta t (min) < 0.75 (grid-units)$

*the varying time-step can lead to inconsistencies in calculation results, this is especially the case is multiple trajectories are running versus an individual trajectory from that group.

TRAJECTORY — EQUATION NOTES

- Higher order integration methods will not make the model more accurate as it relies on linearly interpolated data observations.
- Trajectories will terminate if they leave the meteorological boundary.
- Trajectories that intersect the ground will still have continuing advection along the surface.
- •Trajectories that hit the top of the model will reflect back.
- Horizontal integration of the position vector is done in grid units.
- Vertical integration of the position vector is done using normalized sigma coordinate system:

 $\sigma = (Z_{top} - Z) / (Z_{top} - Z_{gl}),$ [all heights MSL]

•Z = height at MSL, gl = height of ground level, top = scaling height of top of model (default = 25km) *If calculations not needed at a certain level, you can reduce run time by shrinking default values.

TRAJECTORY — ERROR

Three types of trajectory error:

- 1. Computational Trajectory Error: The lowest of all three errors.
- 2. Meteorology Trajectory Error:
 - The most important source of error, as it can constantly be fluctuating depending on the conditions
 - It is highly dependent on the time step and complexity of the terrain and weather conditions
- 3. Absolute Trajectory Error:
 - The average deviation from ground truth trajectory per frame.
 - Brings all the error together.
 - Can be determined using the nearest approach distance method. (we will do this later)

TRAJECTORY — CASE STUDY

We will be using data from the Cross Appalachian Tracer Experiment (CAPTEX):

- Six 3-hour releases of perfluorocarbon (C7F14) tracers: four in Dayton, Ohio and two in Sudbury, ON
- Samples collected at 84 sites, 300-800km from the release over 3-6 hour averaging periods for 48-72 hours
- Aircraft also collected data for short time periods (6-10 mins): the lowest level was 914m MSL and the highest was 2134m MSL
- •This aircraft data can identify the plume centerline. Computing the backwards trajectory of it should pass over the tracer release location.
- Later, we are going to use this data to conduct the nearest approach distance method for measuring absolute trajectory error.
- •More information can be found here: <u>https://journals.ametsoc.org/view/journals/apme/56/8/jamc-</u> <u>d-16-0345.1.xml</u>

TRAJECTORY — SIMPLE SCENARIO

*Make sure you have the Hysplit basic tutorial downloaded as we will be using this data.https://www.ready.noaa.gov/HYSPLIT_Tutorials.php

- 1. Go to: TRAJECTORY→SETUP RUN.
- 2. First we will enter the start time as: 83 09 25 17 (when the tracer was released).
- 3. We will simplify the scenario by having 1 starting location, which will be at **39.90 -84.22** and **600 mAGL**. *default for hysplit is AGL.
- 4. The run time can be set to **68** hours.
- 5. Vertical motion will be the data field from the meteorological input file.
- 6. Call the output **tdump_fwrd**.
- 7. We will be using the **captex2_wrf27uw.bin** meteorological file.
- 8. Press **SAVE** to exit.

😵 Trajectory Setup	- 🗆 X
Starting time (YY MM DD HH [mm]):	83 09 25 17
Number of starting locations: 1 ====>	Setup starting locations
Total run time (hrs) Direction 68 © Fwrd C Back	Top of model (m agl)
Vertical Motion Method: 0 = input mod	del data Select
Output (/path/file): ./tdump	Browse
Add Meteorology Files Clear C:/Tutorial/captex	Selected Files: 1 captex2_wrf27uw.bin
Quit Help Save as	Retrieve Save

TRAJECTORY — SIMPLE SCENARIO

9. Now we will run the model. Go to:

TRAJECTORY→RUN MODEL

The pop up box will provide progress on the run.

10. After it is complete we will look at the display. Go to:

TRAJECTORY > DISPLAY > TRAJECTORY

Allow all defaults by clicking **EXECUTE DISPLAY**

 We can now save our settings by going back to the SETUP RUN menu and clicking SAVE AS. We will save the settings as traj_base_control.txt.

NOAA HYSPLIT MODEL

🧳 Save	Simulation by	Name			. 🗆 🗙
Enter	Path/Name	to sav	e as C	ONTROL	Browse
traj_	base_contr	col.txt			
1		_		_	
	Quit	H	elp	Save	

ABSOLUTE TRAJECTORY ERROR

1. Input the **START TIME**, **START LOCATION**, and **START HEIGHT** for the **914m** aircraft data. Information on this data can be found in its textfile:

TUTORIAL →CAPTEX→FLIGHT0914.TXT

*We will be starting our simulation at the highest concentration. (see input on right)

- The tracer was released at 17 UTC on Sept 25, and the collection was at 03 UTC (26th), so run duration should be -10 with BACK trajectory selected.
- 3. We will be using the following meteorology: captex2_wrf27uw.bin.
- 4. Name the output: **tdump_0914**. Hit **SAVE** to exit.

TRAJECTORY - ADVANCED**CONFIGURATION OPTIONS**

*When you modify the advanced menu you will be prompted when you run the model to use those settings or the defaults. If you meant to make advanced changes, click the right most button, otherwise click the center

button.	\checkmark Advanced Configuration Namelist File Found! – \Box $ imes$
	SETUP.CFG namelist file found! Created from the Advanced-Configuration Menu.
	Cancel Run Delete file then Run Run using SETUP file

Next we will need to go into the Advanced Configuration tab. Since the data is 5. given in MSL we will need to change the default of AGL. Go to:

ADVANCE CONFIGURATION \rightarrow TRAJECTORY \rightarrow MENU #2

Select the button for **MSL**. Hit **SAVE** to exit Menu #2.

Similar to the SETUP RUN we can also save our advanced configuration files.

Go to **SAVE AS** and type call it traj_0914_setup.txt.

Then hit **SAVE** to exit.

🕴 Save Configurati	—		\times
Enter Path/Name to save	configu	ration	Browse
traj 0914 setup.txt			
Quit He	elp	Save	

MSL. Minimum size of the meteo subgrid: 10 Height unit for input and output C Heights above ground level C Relative to mean-sea-level C Fraction of the mixed layer	the size of the forces the model concentration gr	nds automatically during the calculation to encomp plume. A subgrid larger than the meteorological gri to load the entire data grid. Source heights and id heights can be defined as either AGL (default) o
C Heights above ground level C Relative to mean-sea-level		nimum size of the meteo subgrid: 10
© Relative to mean-sea-level		
C Fraction of the mixed layer		© Relative to mean-sea-level
		C Exaction of the mined lawon

6. Now we will run the model. Go to:

TRAJECTORY→RUN MODEL

The pop up box will provide progress on the run.

7. After it is complete we will look at the display. Go to:

TRAJECTORY→DISPLAY→TRAJECTORY

This time we will plot the previous trajectory alongside the aircraft data. In the **INPUT ENDPOINTS CELL** type in ./tdump_fwrd+tdump_0914.

*the first time-step is the one plotted, so if you want the the full extent of a certain time-step, put it first.

Allow all other defaults by clicking **Execute Display**

We will now add the 4 other aircraft flights and see how they compare to the model.

- 1. Save the **SETUP RUN** as traj_0914_control.txt.
- 2. Create 4 new output files. **SETUP** each and **RUN** it before starting the next one.
 - 1. flight1219.txt: Start Time: 83 09 26 23; 1 Start Location @42.70 -76.17 1219.0; -30 hours; and output to tdump_1219.
 - 2. flight1524.txt: Start Time: 83 09 26 04; 1 Start Location @41.17 -82.79 1524.0; -11 hours; and output to tdump_1524.
 - 3. flight1829.txt: Start Time: 83 09 26 19; 1 Start Location @42.38 -76.14 1829.0; -26 hours; and output to tdump_1829.
 - 4. flight2134.txt: Start Time: 83 09 26 20; 1 Start Location @43.46 -76.15 2134.0; -27 hours; and output to tdump_2134.

- To display the results we will take a different approach this time. Go to your working directory for hysplit. C:/HYSPLIT/WORKING. Create a new text file called traj_files. In this file you will list each of the files you just created (i.e. tdump_*), each on a new line.
- 4. Then go to

TRAJECTORY→DISPLAY→TRAJECTORY and in the input endpoints, type in +./traj_files (or browse for the file to get the right path). Then EXECUTE DISPLAY.

Pin to Quick access	Maus Comu Delete Denamo Neur		Properties • Open • Edit • History Open	Select all Select none Invert selection Select		
	OS (C:) > hysplit > working		open	~	ບ , Sear	ch working
Hysplit ^	Name	Date modified			Size	
Dropbox	default_tplot trajplot.ps	2021-10-19 1 2021-10-19 1		ilo	1 KB 216 KB	
View	MESSAGE	2021-10-191		lie	2 10 KB	
Sort by	> 1 tdump_0914	2021-10-19 1			2 KB	
Group by	> Folder	1-10-19 1	2:04 PM CFG	File	1 KB	
Refresh	Polder Shortcut	1-10-19 1	2:04 PM CFG	File	1 KB	
Customize this folder		1-10-19 1			1 KB	
	Microsoft Access Database Windows Bitmap Image	1-10-19 1			1 KB	
Paste Paste shortcut	Microsoft Word Document	1-10-19 1 1-10-18 1			7 KB 1 KB	
Undo Rename Ctr		1-10-18 1		Document	1 KB	
Git GUI Here	Microsoft PowerPoint Presentation	1-10-18 1	0:07 AM Text	Document	2 KB	
🚸 Git Bash Here	Microsoft Publisher Document	1-10-18 1	0:00 AM File		2 KB	
Send with Transfer	🗟 Rich Text Format	1-10-18 1			2,207 KB	
Give access to	Text Document Microsoft Evcel Worksheet	1-10-18 1		Document	1 KB	
		1-10-18 9 1-10-18 7		Document dows Batch File	1,750 KB 1 KB	
New	Compressed (zipped) Folder	2021-10-18 7			325 KB	
Properties	, completips	2021 10 10 1	.507411 1511		525 115	
itraj_files.txt - Not		- [) X			
tdump_0914	F		^			
tdump_1219 tdump_1524						
tdump_1829						
tdump_2134						

UTF-8

• The mid-boundary layer height that was chosen for the tdump_fwrd trajectory, does do a good job of describing most of the other heights that are above the boundary layer (1222m in this case).

•However, it does not describe ALL the trajectories, as the most northern one behaves quite differently than the other three.

• This indicates that a single trajectory CANNOT describe the complex and diffuse ground-level concentration pattern.

TRAJECTORY — APPLY

• If you have time, try running the traj_base_control.txt scenario again, but with different meteorology. Start in the **SETUP RUN** and click **RETRIEVE**. Type the file into the field to change all your settings back to this simple scenario.

•Make sure to save your output with different names so that you can superimpose them onto each other to compare.

•What models do you think are best at running the trajectory model? (*hint take a look at the time steps and resolution of each)