
\＃＝ニニニニニニニニニニニニニニニニニニニニニニニーニーニーニ＝
\＃6）Use the HPPM method from CMAQ
\＃CW refers to the paper by Colella and Woodward．
\＃1－D domain covers grid points $i=1$ to imax．But 1 and imax are boundary－
\＃condition cells．The main interior computation is for $\mathbf{i}=2$ to（imax－1）．
\＃Pre－calculate some constants
sixth＝1．0／6．0
two3rds $=2.0 / 3.0$
oneoverdelx＝ 1.0 ／delx
\＃Allocate the vectors
dc＝numeric（imax）\＃nominal difference in concentration across a cell
clfirst＝numeric（imax）\＃first guess of conc at left edge of cell i
$\mathrm{cr}=$ numeric（imax）\＃conc at right edge of cell i
cl＝numeric（imax）\＃conc at left edge of cell i
c6＝numeric（imax）\＃this corresponds to parabola parameter a6 of CW eq．（1．4）
FL＝numeric（imax）\＃pollutant flux into the left side of a grid cell
FR＝numeric（imax）\＃pollutant flux into the right side of a grid cell
\＃Iterate forward in time
for（ n in 1：nsteps）\｛ \＃for each time step n
\＃To guarantee that solution is monotonic，check that the left edge of cell i
\＃（which is between cells i and i－1）should not have a concentration lower
\＃or higher than the concentrations in those two neighboring cells
\＃Namely，is clfirst between c［i］and c［i－1］．If not，then fix．
for（i in 2：（imax－1））\｛ \＃for each interior grid point i
del＿cl＝conc［i］－conc［i－1］\＃concentration difference with cell at left
del＿cr＝conc［i＋1］－conc［i］\＃concentration difference with cell at right
dc［i］＝0．5＊（del＿cl＋del＿cr）\＃1st guess of avg conc difference across cell i
if（（del＿cl＊del＿cr）＞0．0）\｛ \＃then revise average difference across cell i
dc［i］＝sign（dc［i］）＊min（ abs（dc［i］），2＊abs（del＿cl），2＊abs（del＿cr））
\} else \{dc[i]=0.0\} \# for the special case of constant conc across cell
\} \# end of grid-point (i) loop
\＃First guess for concentration at left edge of each cell，using revised dc value
for（i in 2：（imax－1））\｛ \＃for each interior grid point i
clfirst［i］＝0．5＊（conc［i］＋conc［i－1］）－sixth＊（dc［i］－dc［i－1］）
\} \# end of grid-point (i) loop
\＃find parameters for the piecewise－continuous parabola in cell i
for（i in 2：（imax－1））\｛ \＃for each interior grid point i
\＃conc at the right edge（cr）of cell i equals concen at left edge of cell i＋1 cr［i］＝clfirst［i＋1］\＃concentration at right edge of cell i cl［i］＝clfirst［i］\＃concentration at left edge of cell i
\＃Check whether cell i is an extremum（is a peak or valley in the conc plot） if（（（cr［i］－conc［i］）＊（conc［i］－cl［i］））＞0．0）\｛ \＃then not extremum
\＃Find the two coefficients of the parabola：dc and c6：
dc［i］$=\mathrm{cr}[\mathrm{i}]-\mathrm{cl}[\mathrm{i}] \quad \#$ updated concen diff．between right and left edges c6［i］＝6＊（ conc［i］－0．5＊（cl［i］＋cr［i］））
if（（dc［i］＊c6［i］）＞（dc［i］＊dc［i］））\｛ \＃then adjust for overshoot at left edge cl［i］＝3．0＊conc［i］－2．0＊cr［i］
\} else if ((-dc[i]*dc[i]) > (dc[i]*c6[i])) \{ \# then adjust for overshoot at right cr［i］＝3．0＊conc［i］－2．0＊cl［i］
\} \# end of block of "not extremum" calculations

