atsc507_finite_volume

March 12, 2020

- Note: This assignment requires lots of straightforward but tedious integrals and algebra. It is strongly recommended that you use software (i.e. symbolic programming with Python, Matlab, Wolfram Mathematica/Alpha) to assist you with your derivations.

1. (/5) Show that T_{i} (i.e. $T(x)$ at the centroid of control-volume CV_{i}) and $\overline{T_{i}}$ (i.e. the controlvolume averaged value of $T(x)$ in CV_{i}) are the same only to second-order accuracy.

Hint 1: Try expanding $\overline{T_{i}}$ at $x=x_{i}$
Hint 2: $x_{i}=\frac{x_{i+\frac{1}{2}}+x_{i-\frac{1}{2}}}{2}$
2. (/15) Derive the 2nd-order centred difference form for the 3-dimensional Poisson's equation using the finite-volume method:

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=S
$$

where $T=T(x, y, z)$ is the temperature, and $S=S(x, y, z)$ is the source/sink term. Assume the mesh is structured and rectangular, with CV dimensions $\Delta x \times \Delta y \times \Delta z$.

Hint 1: $\nabla^{2}()=\nabla \bullet \nabla()$. Knowing this, how would you express the flux \vec{F} in terms of T or derivatives of T ?

Hint 2: The component of the flux integral across the two faces perpendicular to the x-axis (faces $i+\frac{1}{2}$ and $i-\frac{1}{2}$) is the net flux across the faces times the area of the faces:

$$
F_{x, i+\frac{1}{2}} \Delta y \Delta z-F_{x, i-\frac{1}{2}} \Delta y \Delta z=\left(F_{x, i+\frac{1}{2}}-F_{x, i-\frac{1}{2}}\right) \Delta y \Delta z
$$

What is the total flux integral across all faces of the control volume?

Hint 3: $F_{x, i+\frac{1}{2}}$ (i.e. the flux across the "right" face of $\mathrm{CV}_{i}=-$ the flux across the "left" face of $\left.\mathrm{CV}_{i+1}\right)$ will need a linear combination of $\overline{T_{i}}$ and $\overline{T_{i+1}}$. The "centred" part of the differencing refers to the flux calculations being equally dependent on the neighbouring control-volume averages. Once you've found how to express $F_{x, i+\frac{1}{2}}$ in terms of $\overline{T_{i}}$ and $\overline{T_{i+1}}$, finding the fluxes across the other faces should be doable by inspection.

