atsc507_fv3mpas

March 21, 2020

1. (/10) Consider a 1D domain, from $x=-1$ to $x=1$. For $N=3$ (i.e. 3 Voronoi regions), find the locations of the generating points z_{i} of a centroidal Voronoi tessellation for the density function $\rho=1$. You should be able to do this by inspection, but explain how you got your answer regardless.
Then, for the same domain, consider a sequence of points $x=$ $-0.9,-0.8,-0.7, \ldots, 0.7,0.8,0.9$. Using the points in the sequence, approximate the cell centroids for $N=3$. Does your answer match what you got by inspection? Why or why not?

Hint 1: You should divide up the sequence of points into 3 regions between $x=-1$ and $x=1$ for summation.

Hint 2: Using a spreadsheet or a programming language may help with your computation.
2. (/10) Assume a constant, positive vertical velocity w blowing across MPAS vertical levels. Write down the vertical flux divergence (i.e. flux ${ }_{t o p}$ - flux bottom) of a cell-averaged scalar ψ for cell k, expressed in terms of $\psi_{k-1}, \psi_{k}, \psi_{k+1}$, to third-order accuracy. Explain why your chosen scheme is an upwind-biased scheme.
Hint: You may start from the expression of the flux across the top edge of the cell, i.e. the already-derived $F_{k+\frac{1}{2}}$. Unless you desperately want to, there is no need to start from the original FV definitions to derive the flux divergence.
3. (/5) For a cube with dimensions $2 a \times 2 a \times 2 a$ inscribed within a sphere with radius R, show that $a=\frac{\sqrt{3}}{3} R$.
4. (/20) Using a programming language of your choice, construct and plot a c12 cubed-sphere mesh using (a) an equidistant gnomonic projection, and (b) an equiangular gnomonic projection. Your plots should be similar to Fig. 1c in Putman and Lin (2007): "Finite-volume transport on various cubed-sphere grids." Obviously your meshes would be of a much coarser resolution. How do your two different projections compare? What happens to the two projections when you increase the resolution of your meshes, say to c24, c36, c48, etc.?

