MPAS NUMERICS, DYNAMICS, AND RESEARCH

Timothy Chui Mar. 21, 2019

http://mpas-dev.github.io/atmosphere/tutorial.html

Overview of seminar series

- Introduction to MPAS
- The MPAS Mesh
- Introduction to Finite-Volume Discretization
- MPAS Numerics, Dynamic, and Research

http://mpas-dev.github.io/atmosphere/tutorial.html

Seminar 1: WRF vs. MPAS

http://mpas-dev.github.io/atmosphere/tutorial.html

horizontal grid

 Eulerian, finite-difference, structured Eulerian, finite-volume, unstructured

Seminar 1: WRF vs. MPAS

WRF Lat-Lon global grid

- Anisotropic grid cells
- Polar filtering required
- Poor scaling on massively parallel computers

MPAS Unstructured Voronoi (hexagonal) grid

- Good scaling on massively parallel computers
- No pole problems

Seminar 1: MPAS Forecasts

Sea Level Pressure and 100.0-50.0 kPa Thickness

Initialized: 2019-02-14_00:00:00 Valid: 2019-02-15_02:00:00 Model/IC: MPAS V6.1/GFS 0.25° 150-30 km variable-resolution grid

Contour Lines: Sea Level Pressure (kPa)

Seminar 2: Spherical Centroidal Voronoi Tessellations

http://mpas-dev.github.io/atmosphere/tutorial.html

Seminar 2: Spherical Centroidal Voronoi Tessellations

• Points associated with a Voronoi region V_i make up a Voronoi set \hat{V}_i

$$\widehat{V}_i = \{ \boldsymbol{x} \in \Omega \mid |\boldsymbol{x} - \boldsymbol{z_i}| < |\boldsymbol{x} - \boldsymbol{z_j}| \text{ for } j = 1, \dots, k, j \neq i \}$$

Seminar 2: Spherical Centroidal Voronoi Tessellations

In general, the generating point z_i of each Voronoi region is not the same as the mass centroid z_i^* of the region

 $z_i \neq z_i^*, i = 1, ..., k$ $z_i = z_i^*, i = 1, ..., k$

Seminar 3: Finite-Volume Discretization

$$\frac{d\overline{U}}{dt} = -\frac{1}{V} \oint_{\partial CV} (\vec{F} \cdot \hat{n}) dA + \bar{S}$$

• Change in the control volume average \overline{U} is due to stuff leaving and entering control volume, and stuff \overline{S} being created or destroyed on the inside

Table of Contents

- Vertical Coordinate System
- Horizontal Coordinate System
- MPAS Dynamical Equations
- Vertical Discretization
- Horizontal Discretization
- Summary

http://mpas-dev.github.io/atmosphere/tutorial.html

Vertical Coordinate System

WRF Pressure-based terrain-following sigma vertical coordinate

terrain-following vertical coordinate

• Improved numerical accuracy

http://www2.mmm.ucar.edu/projects/mpas/tutorial/UK2015/slides/MPAS-solver_physics.pdf

Vertical Coordinate System

Basic terrain-following (BTF; Gal-Chen and Somerville 1975):

$$z(x, y, \zeta) = \zeta + \left[1 - \frac{\zeta}{z_t}\right] h(x, y)$$

Smoothed terrain-following (STF; Klemp 2011)

$$z(x, y, \zeta) = \zeta + A(\zeta)h_s(x, y, \zeta)$$

 $z(x, y, \zeta) =$ geometric height [m] $\zeta =$ terrain-following constant; for BTF $\zeta = z$ at z_t (model lid) h(x, y) = terrain height [m] $h_s(x, y, \zeta) =$ terrain influence in STF; $h_s(x, y, 0) = h$ $A(\zeta) =$ controls how quickly terrain-following -> constant height

Vertical Coordinate System

15 km grid

7.5 km grid

Smoothed hybrid terrain-following (STF) coordinate

http://www2.mmm.ucar.edu/projects/mpas/tutorial/UK2015/slides/MPAS-solver_physics.pdf

Vertical Coordinate System - Init

• Terrain

- 30 arcsec data averaged over grid-cell areas
- Single pass of smoothing using 4th-order Laplacian
- Vertical Coordinate
 - Choice non-smoothed (BTF) or *n*-times smoothed (STF); iterate upwards from $h_s^n(x, y, 0) = h$

$$\begin{split} \beta(\zeta) &= \text{smoothing} \\ \text{coefficient} \\ d &= \text{grid-cell length scale} \\ z_H &= \text{height where } \zeta = z \\ \nabla_{\zeta}^2 h_s^n &= \text{Laplacian} \end{split} \qquad \begin{aligned} h_s^{n+1} &= h_s^n + \beta(\zeta) d^2 \nabla_{\zeta}^2 h_s^n \\ A(\zeta) &= \cos^6 \left(\frac{\pi}{2} \frac{\zeta}{z_H}\right), \qquad \zeta < z_H \\ \zeta &\geq z_H \end{aligned}$$

Horizontal Coordinate System

Horizontal Coordinate System

Horizontal Coordinate System

- Geostrophic flow
- Dry
- Incompressible
- Pythagorean

$$u = -\frac{1}{\rho f} \frac{\partial p}{\partial y}$$
$$v = \frac{1}{\rho f} \frac{\partial p}{\partial x}$$

$$a^2 + b^2 = c^2$$

- Coupled variables in conservative form
- Hybrid-height coordinate •
- Nonhydrostatic
- Fully compressible
- Coupled (moist) potential temperature

$$\theta_m = \theta [1 + (R_v/R_d)q_v]$$

$$p = p_0 \left(\frac{R_d \zeta_z \Theta_m}{p_0}\right)^{\gamma}$$

$$\frac{\rho_m}{\rho_d} = 1 + q_v + q_c + q_r + \cdots$$

Skamarock et al. (2012)

$$\begin{split} \frac{\partial \mathbf{V}_{H}}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \bigg[\mathbf{\nabla}_{\zeta} \bigg(\frac{p}{\zeta_{z}} \bigg) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \bigg] - \eta \mathbf{k} \times \mathbf{V}_{H} \\ &- \mathbf{v}_{H} \mathbf{\nabla}_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \mathbf{\nabla}_{\zeta} K \\ &- eW \cos \alpha_{r} - \frac{\mathbf{v}_{H} W}{r_{e}} + \mathbf{F}_{\mathbf{V}_{H}}, \\ \frac{\partial W}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \bigg[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \bigg] - (\mathbf{\nabla} \cdot \mathbf{v} W)_{\zeta} + \frac{uU + vV}{r_{e}} \end{split}$$

$$\frac{\partial v}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_m \right] - (\nabla \cdot \boldsymbol{v} W)_{\zeta} + \frac{u \sigma + v v}{r_e} + e(U \cos \alpha_r - V \sin \alpha_r) + F_W,$$

$$\frac{\partial \Theta_m}{\partial t} = -(\nabla \cdot \nabla \theta_m)_{\zeta} + F_{\Theta_m},$$

$$\frac{\partial \tilde{\rho}_d}{\partial t} = -(\mathbf{\nabla} \cdot \mathbf{V})_{\zeta}, \quad \text{and}$$

$$\frac{\partial Q_j}{\partial t} = -(\mathbf{\nabla} \cdot \mathbf{V} q_j)_{\zeta} + F_{Q_j}.$$

19

 ∂

- Coupled variables in conservative form
- Hybrid-height coordinate
- Nonhydrostatic
- Fully compressible
- Coupled (moist) potential temperature

Moist (virtual) θ

$$\begin{aligned} \theta_m &= \theta [1 + (R_v/R_d)q_v] \\ p &= p_0 \Big(\frac{R_d \zeta_z \Theta_m}{p_0} \Big)^{\gamma} \quad \text{Eqn of state} \\ \frac{\rho_m}{\rho_d} &= 1 + q_v + q_c + q_r + \cdots \\ \text{Skamarock et al. (2012)} & \text{Moist air} \end{aligned}$$

$$\frac{\mathbf{V}_{H}}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[\mathbf{\nabla}_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \eta \mathbf{k} \times \mathbf{V}_{H}
- \boldsymbol{v}_{H} \mathbf{\nabla}_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \boldsymbol{v}_{H}}{\partial \zeta} - \rho_{d} \mathbf{\nabla}_{\zeta} K
- eW \cos \alpha_{r} - \frac{\boldsymbol{v}_{H} W}{r_{e}} + \mathbf{F}_{\mathbf{V}_{H}},$$

$$\frac{\partial W}{\partial t} = -\frac{\rho_d}{\rho_m} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_m \right] - (\nabla \cdot \boldsymbol{v} W)_{\zeta} + \frac{u U + v V}{r_e} + e(U \cos \alpha_r - V \sin \alpha_r) + F_W,$$

$$\frac{\partial \Theta_m}{\partial t} = -(\nabla \cdot \nabla \theta_m)_{\zeta} + F_{\Theta_m},$$

Temperature
$$\frac{\partial \tilde{\rho}_d}{\partial t} = -(\nabla \cdot \nabla)_{\zeta}, \text{ and } \text{Continuity}$$

 $\frac{\partial Q_j}{\partial t} = -(\mathbf{\nabla} \cdot \mathbf{V} q_j)_{\zeta} + F_{Q_j}.$

Moisture

Flux-form prognostic equations

$$(U, V, W, \Theta_m, Q_j) = \widetilde{\rho_d} \cdot (u, v, w, \theta_m, q_j)$$

j = v (vapour), c (cloud), r (rainwater), etc.

$$\widetilde{\rho_d} = \rho_d \left(\frac{1}{\frac{d\zeta}{dz}} \right) = \rho_d \zeta_z$$

$$\boldsymbol{v} = (u, v, w), \boldsymbol{V} = (U, V, W)$$

Vertical momentum

$$\begin{aligned} \frac{\partial W}{\partial t} &= -\frac{\rho_d}{\rho_m} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_m \right] - \left(\nabla \cdot \boldsymbol{v} W \right)_{\zeta} + \frac{u U + v V}{r_e} \\ &+ e(U \cos \alpha_r - V \sin \alpha_r) + F_W, \end{aligned}$$

Vertical momentum

Horizontal momentum

Horizontal momentum

Transport (Advection)

• ψ = some quantity

$$\frac{\partial \rho \psi}{\partial t} = -\nabla_{\zeta} \cdot \mathbf{v}_{\mathbf{H}}(\rho \psi) - \frac{\partial W \rho \psi}{\partial z}$$

Scalar Transport

• FV formulation over, integrate over cell

$$\int_{V} \frac{\partial \rho \psi}{\partial t} dV = -\int_{V} \left(\nabla \cdot \mathbf{v}(\rho \psi) \right) dV$$

Scalar Transport

- Apply divergence theorem; controlvolume average definition
- Σ = surface of polyhedron; $d\sigma$ = surface element

$$\frac{\partial \overline{\rho \psi}}{\partial t} = -\frac{1}{V} \int_{\Sigma} (\rho \psi) \mathbf{v} \cdot \mathbf{n} d\sigma$$

7	Vertical Discretization $W = \rho W$		
∠ ↑		k+2 -	stencil $\delta_z^2 \psi_k = \psi_{k-1} - 2\psi_k + \psi_{k+1}$
	$F(W,\psi)_{k+\frac{1}{2}}$	k+1/2 k+1/2 k k-1/2 k-1 -	$F(W, \psi)_{k+\frac{1}{2}} = W_{k+\frac{1}{2}} \left[\frac{1}{2} (\psi_{k+1} + \psi_k) - \frac{1}{12} (\delta_z^2 \psi_{k+1} + \delta_z^2 \psi_k) + sign(W) \frac{\beta}{12} (\delta_z^2 \psi_{k+1} - \delta_z^2 \psi_k) \right]$
		k-2	eta = 0: 4 th -order scheme, neutral $eta > 0$: 3 rd -order scheme, damping

 Sum counter-clockwise around hexagon edges

https://www.earthsystemcog.org/site_media/projects/dycore_test_group/20160122_M PAS_configuration_overview.pdf

$$F(U,\psi)_{i+\frac{1}{2}}$$

= $U_{i+\frac{1}{2}} \Big[\frac{1}{2} (\psi_{i+1} + \psi_i) - \frac{1}{12} (\delta_x^2 \psi_{i+1} + \delta_x^2 \psi_i) + sign(U) \frac{\beta}{12} (\delta_x^2 \psi_{i+1} - \delta_x^2 \psi_i) \Big]$

- *x* = direction normal to cell edges
- Coordinates aren't next to each other in the horizontal; can't do straight-forward computation of $\delta_x^2 \psi_i$

$$\delta_x^2 \psi_i = \Delta x^2 \frac{\partial^2 \psi}{\partial x^2} + \mathcal{O}(\Delta x^4)$$

$$\begin{split} F(U,\psi)_{i+\frac{1}{2}} &= U_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} + \psi_i) \\ &- \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \\ &+ sign(U) \Delta x_e^2 \frac{\beta}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \end{split}$$

https://www.earthsystemcog.org/site_media/proje cts/dycore_test_group/20160122_MPAS_configur ation_overview.pdf

$$F(U,\psi)_{i+\frac{1}{2}}$$

$$= U_{i+\frac{1}{2}} \left[\frac{1}{2} (\psi_{i+1} + \psi_i) - \Delta x_e^2 \frac{1}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} + \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} + sign(U) \Delta x_e^2 \frac{\beta}{12} \left\{ \left(\frac{\partial^2 \psi}{\partial x^2} \right)_{i+1} - \left(\frac{\partial^2 \psi}{\partial x^2} \right)_i \right\} \right]$$

$$\psi_{3}$$

$$\psi_{2}$$

$$\psi_{1}$$

$$\psi_{3}$$

$$\psi_{0}$$

$$\psi_{1}$$

$$\psi_{7}$$

$$\psi_{4}$$

$$\psi_{6}$$

$$\psi_{5}$$

Fit polynomial to approximate second derivatives (Skamarock and Gassmann 2011)

https://www.earthsystemcog.org/site_media/proje cts/dycore_test_group/20160122_MPAS_configur ation_overview.pdf

Fit polynomial to approximate second derivatives (Skamarock and Gassmann 2011)

Not discussed

https://www.convertwithcontent.com/webmarketing-in-a-nutshell/

- Derivations
- Types of hybrid coordinates
- Nonlinear Coriolis term
- Kinetic energy gradient
- Explicit spatial filters
- Time discretization (split-explicit RK3); treatment of acoustic modes
- Top-of-model Rayleigh damping

Summary

- MPAS is a cool model
- Hybrid-height, terrain-influenced vertical coordinate
- C-Grid staggering on a Voronoi mesh
- Nonhydrostatic, conservative equations
- Sophisticated FV discretization on an unstructured mesh

http://mpas-dev.github.io/atmosphere/tutorial.html

Thank you (???)

http://mpas-dev.github.io/atmosphere/tutorial.html

References

- Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. *J. Comput. Phys.*, 1, 119–143.
- Gal-Chen, T., and R.C.J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209-228, doi:10.1016/0021-9991(75)90037-6.Klemp, J. B., 2011: A Terrain-Following Coordinate with Smoothed Coordinate Surfaces. *MWR*, 139, 2163-2169, doi: 10.1175/MWR-D-10-05046.1.
- Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations. *MWR*, **139**, doi: 10.1175/MWR-D-10-05049.1.
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Technical note -475+STR
- Skamarock, W. C., and A. Gassmann, 2011: Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration. *MWR*, **139**, 2962-2975, doi: 10.1175/MWR-D-10-05056.1.
- Skamarock, W. C., J. B. Klemp, M. Duda, L. D. Fowler, and S. H. Park, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. *MWR*, 140, 3090 – 3105, doi: 10.1175/MWR-D-11-00215.1.