THE MPAS MESH

Timothy Chui

Feb. 28, 2019

£
(]
Q
()]
C
Q.
n
0
=
S
[oN
=
e

http://mpas-dev.github.io/atmosphere/tutorial.html



Overview of seminar series

- Introduction to MPAS

- The MPAS Mesh

- Introduction to Finite-Volume
Methods

- MPAS Numerics and
Dynamics

- **MPAS Workshop
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Spherical Centroidal Voronoi Tessellation
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SCVTs and MPAS

- Want a multiresolution
approach to global climate
and weather modelling (don't
want boundaries)

- Don’t want any singularities
(looking at you, lat-lon)

- Want ease of control in how
you define what's “high
resolution” (looking at you,
stretched-grid)

Ringler et al. (2011)

http://mpas-dev.github.io/atmosphere/tutorial.html
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Lat-Lon global grid

¢ Anisotropic grid cells

¢ Polar filtering required

¢ Poor scaling on massively
parallel computers
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MPAS
Unstructured Voronoi
(hexagonal) grid

* Good scaling on massively
parallel computers

¢ No pole problems

https://www3.nd.edu/~gtryggva/CFD-Course/2011-Lecture-25.pdf



Primary Goal

Build a mesh that covers the whole globe... (global)
...that has flexible geometry... (multiresolution)

...and no boundaries or discontinuities (conformal)




Spherical Centroidal Voronoi Tessellation
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Tessellation

- Tiling of surface using
geometric shapes without
overlaps or gaps

Study of Regular Division of the

Plane with Reptiles (1939) — M.C. http://www.designcoding.net/semi-regular-
Escher tesselation/



Voronoi Tessellation
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Region i

Generating point j

- Tessellation of surface with

tiles (regions) that are
polygons each associated
with a generating point

- All points in each region are

closer to the region’s
generating point than to any
other generating point

’ http://kisspng.com
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Voronoi Tessellation - Definition
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- Tessellation of domain
Qc RN with k regions V, that
are each associated with a
z;, 1< i<k

- All points x in V; are closer to
generating point z; than to
any other z;, j # i
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Voronoi Tessellation - Definition
— T ——0

- Points associated with a
Voronoi region I/; make up a
Voronoi set V/,

?i={x € Q| |x—2z] <|x—zj| forj=1,..,k,j+1i}

1



Voronoi Tessellation - Definition

- Set of all Voronoi regions is the Voronoi tessellation V of Q)

- This is associated with the set of generating points Z of Q

12



Voronoi Tessellation - Properties

- Geometric entity V; is the same as the set-based entity 7/,
- Voronoi regions do not overlap (intersections = empty set)
ViﬂV}- =®f0rl:/—']

- Voronoi regions and their boundaries cover QQ completely,
iIncluding its boundaries

k — —
U rr
=1

13



19 08-06-04-02 0 02 04 06 08 1

1

0.8}
0.6}
0.4}
0.2}
ot
-0.2f
-0.4}
-0.6}

-0.8}

1 08060402 0 02 04 06 08 1

Voronoi Tessellation - Definition

(Ju et al. 2011)
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Voronoi Tessellation - Definition

1

(Ju et al. 2011)
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- Edges between two cells bisects (and is orthogonal to)
the line joining the two generators
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Voronoi Tessellation - Definition

1 (Ju etal. 2011)
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- Connecting the generators of the cells forms the
Delaunay triangulation of the mesh

16



Voronoi Tessellation - Definition

1 r

(Ju etal. 2011)
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- Circle centered at the vertex shared by the three cells
should touch the three generators; no generators inside
the circle (circumscription property/Delaunay
condition)

17



Voronoi Tessellation - Definition

(Ju et al. 2011)

- Left: bad (green rectangle within blue circle; purple rectangle
within red circle)

- Right: good (meets Delaunay condition)
18



Voronoi Tessellation - Energy

- Energy functional (cost function/variance/inertia)

k
i=1

Kk
€ ({Zi}ﬁipv({zi}é{:ﬂ) = z (2, Vi(2) = ZJV p(x)|x — zi|2dx
[ i=1""1

- Total energy is equal to the sum of the energies of each region
within domain

- p(x) > 0 is a differentiable density function defined in O
(important for MPAS later!)

- “Measure of how well information in Q is spread out in V for a
given information density p(x)”
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Centroidal Voronoi Tessellation

*

(Ju et al. 2002)

Z;
Z; A
\ /

* In general, the
generating point

z, of each Voronoi

region is not the
same as the mass

centroid z: of the
region

20
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CVT — Definition through &

- CVT = generating points are collocated with centers-of-
mass of Voronoi regions:

B fvixp(x)dx_ *
Jy p(0)dx i

Zj i

- z; = z; results in a critical point of energy £

21



L
CVT — Definition through &

- Can show by (homework):

- Variational approach

- Perturb generating point z; with some small av,
where v is some arbitrary vector in RY and let a —» 0

- Gradient approach
- Find z; such that VE = 0

- fvi xp(x)dx
~J, p(x)dx

Zi

22



CVT - Uniqueness

Uniqueness?
p(x) = 1 in unit square

(Ju et al. 2002)

Energy functional reaches a critical point with a CVT, but not
necessarily an absolute minimum

23



CVT - Uniqueness

More precisely:

(Ju et al. 2002)

For a given set of generating points Z = {z;}¥_, there is one unique
V={V},

For a given Q, k, and/or p, there is no unique Z (so no unique V)

24
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CVT — Goal

- Best thing we can do for a given Q, k, and/or p:
Find a tessellation V that minimizes £

- Gersho’s conjecture in 2D (1979): for sufficiently
large k, the shapes of the Voronoi regions for an
optimal tessellation is the hexagon
- Proved by Newman (1982)

- No proof for 3D+

25



dal Voronoi Tessellation

Spherical Centroi
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L
Applications of (S)CVTs

- Original papers by Gersho (1979) focused on how
to cut up a signal fairly (quantization)

- Analog -> Digital stuff

- Useful for electrical engineers

27



CVTs for Image Compression

Original Monte-Carlo (random distribution)

(Du et al. 1999)

CVT + "Dithering”



CVTs in Biology/Zoology

Male tilapia territories (sand pits)

(Du et al. 1999)
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CVTs in Geology

Giant’s Causeway, Northern Ireland

https://www.ireland.com/en-se/what-is-available/natural-landscapes-and-
sights/articles/giants-causeway-myth/

https://economictimes.indiatimes.com/magazines/panache/the-40000-odd-basalt-
formations-at-the-giants-causeway-in-northern-ireland/articleshow/65454173.cms
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CVTs in Statistics/Data Analysis

k-means clustering
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https://aws.amazon.com/blogs/machine-learning/k-means-clustering-with-amazon-sagemaker/

31



Mesh Generation Methods

- All methods are iterative

- Two main methods:

- Deterministic Methods

- Next iteration based directly on the locations of generator
points/Voronoi regions from previous step

- Slow, but generally better convergence

- Probabilistic Methods
- Next iteration affected by some random process
- Fast, but generally worse convergence

32



Mesh Generation Methods

- Most common deterministic method: Lloyd’s
Method (Lloyd 1982)

- Update generators z; and Voronoli regions V;
independently from each other

- Fix generating points, and create Voronoi regions

- Fix regions, and compute new centroids

33
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Lloyd’'s Method

Lloyd’s Method (currently used by MPAS)
- 1) Populate sphere with generating points z,
- 2) Create Voronoi regions with those points

- 3) Compute centroids of those regions via numerical
integration

- 4) Repeat (2) and (3) until change in some criterion
(like energy) reaches tolerance (i.e. “converges” to
some value)

34
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Lloyd’'s Method for MPAS

- Ju et al. (2011): for sufficiently many Voronoi cells, the
diameters h of the cells on an SCVT are conjectured to be
related by:

- Can use density function to control resolution of mesh at
certain points!

35
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Lloyd’'s Method for MPAS

Jacobsen et al. (2013): 8x difference in resolution between coarse and

4
fine portions of mesh; max(p) = 1, min(p) = (%)
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Lloyd’s Method — Convergence for MPAS

SCVT Convergence

8.01 [

The animation at left
covers only the first
4000 iterations at a
variable framerate
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http://www2.mmm.ucar.edu/people/duda/files/mpas/talk
s/mpas_mesh_generation.pdf 37



Summary

- CVTs and SCVTs have lots of applications in various
fields, including weather and climate modelling

- CVTs/SCVTs have more desirable (energy) properties
than general VTs

- Many ways to generate an SCVT (but it's a very tough
problem)

- MPAS mesh currently uses Lloyd’s method to generate
an SCVT

38
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Next Time on Dragon Ball Z.. ..
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