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By the end of this course, you should be able to:
explain the scientific basis for NWP
utilize vertical and horiz. coordinate transformations
make finite diff. approximations to time & space derivatives
analyze data, including error propagation
use the von Neumann method to find errors & num. stability
correct for systematic errors with postprocessing
reduce random errors via ensemble forecasts
produce probabilistic forecasts from ensembles
verify forecast skill statistically
describe semi-Lagrangian advection methods
describe data assimilation methods
explain the basis for finite-volume NWP models: MPAS, FV3
install, compile, and run the WRF-ARW model
explain how physics parameterizations are used for subgrid phenomena

Learning Goals
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Factors and Terms in WRF eqs.
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• curvature terms (due to inertia on spherical earth
• metric terms (due to terrain following vert. coord.)
• map scaling & rotating factors (for horiz. coord.)
• normalizing factors -> anomaly eqs. 

 
 
 
 
 
 

• staggered grids (Arakawa grids)
• stencils & grid computation rules



Errors
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• truncation errors (in the Taylor’s series)
• amplitude errors (linear ; damping or blowing up)
• phase speed errors (different wavelengths move at different speeds.   Issues: 

numerical dispersion; ghost modes)
• group speed (energy flow) errors.  3ptCTCS has 2∆x waves that move in 

the wrong direction
• aliasing (short wavelengths folded into 

longer wavelengths.  Thus, need to  
smooth the terrain to match the  
horiz. resolution)

• nonlinear errors 

• programming errors & bugs
• round-off errors (due to digital approx. of numbers)
• dynamic instability (chaos; butterfly effect)



Finite-diff. approx. to horizontal derivatives
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• centered & one-sided (upwind) differences

• analogous to interpolation

• different orders of accuracy (in Taylor’s series)

• higher derivatives (second, third, etc.) 



Finite-diff. approx. to time derivatives
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• explicit & implicit methods

• analogous to extrapolation

• Euler forward (unstable)

• leapfrog, etc.

• 3rd order Runge Kutta (used in 
WRF-ARW)

• Adams Bashforth (off-centered 
verision used in WRF-NMM)

• Lax Wendroff

• Matsuno 
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• results from truncation 
error of  Taylor series

• found by comparing finite-
difference solution for a 3-
pt centered difference to 
the analytical solution

• see Warner Fig. 3.22 

• Significance:  need ∆x 
to be 1/7 of the smallest 
scale you want to resolve.

 

Key Points from Error Analysis: 
 NWP models have “7 ∆x” resolution

m   (for L = m ∆x)
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• Significance:  the smallest 
wavelengths (2∆x or 4∆x) are 
often the most problematic 
(i.e., errors grow fastest)

Key Points from Error Analysis: 
 von Neumann Linear Stability Analysis

Von Neumann Method for Determining Numerical Stability
of a Finite-Difference Scheme

1. Write the finite difference eq. for 1-D linear advection of temperature T  
         ∂T/∂t =  – Uo · ∂T/∂x
   where Uo  is constant wind speed.  Use j as grid index, n as time index. 

2. Assume the following eigenmode solution, & plug into the finite diff. eq.
       T = [A(k)]n  · exp( i k j ∆x )   
    where A is amplitude, k is wavenumber, i is sqrt(–1), ∆x is grid spacing

3. Divide the resulting eq. by
           [A(k)]n  · exp( i k j ∆x )

4. Solve the resulting equation for amplitude  A(k).

5. Use Euler's notation to convert into sines and/or cosines
          eiy – e-iy = 2 i sin(y)        and      eiy + e-iy = 2 cos(y)

          eiy = cos(y)  +  i sin(y)       and     e-iy =  cos(y) – i sin(y)  

6.  Replace  Uo ∆t / ∆x  with the Courant Number   CR .   

7.  Simplify the result where possible, and collect the real terms together
     and the imaginary terms together. These are the real and imaginary
     parts of the Amplitude, where  A(k) =  AR(k) + i AI(k) . 

8.  Find the amplitude modulus:     | A(k) |  = sqrt{   [AR(k)]2 + [AI(k)]2  } . 

9.  Replace k with m, using:  k = 2 π / L  =  2 π / (m ∆x)

10.  Find the worst-case  m  that gives the worst (most unstable) amplitude
     modulus, and assume that this wave exists in the atmosphere.
       (Utilize the handout of sine and cosine values for various m values.)

11.   Make stability conclusions:
       Stable, but damped, if   |A(m)| < 1 .
       Stable if   |A(m)| = 1 .
       Unstable (blows up) if    |A(m)| > 1 .

-end-

See Press et al, 2007: 
Numerical Recipes, 
3rd Ed., Cambridge
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• Courant Number: 
CR = U ∆t / ∆x

• Numerically unstable if  
CR > a threshold (≈ 1)

• first appeared in our linear stability 
analysis for Forward in Time,  
Centered in Space (FTCS). 

• Significance:  
smaller ∆x requires smaller ∆t.

• Significance:  halving ∆x requires 8x 
the number of computations

Key Points from Error Analysis: 
 CFL Stability Criterion

(CFL = Courant-Friedrichs-Lewy)
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• some schemes either cause 
major damping of  short 
wavelengths for CR< 1, or 
cause amplification for  
CR > 1.

• found for finite-difference 
solution for a forward-in-
time, backward in space.

• see Warner Fig. 3.23 

• Significance:  This 
scheme won’t work for 
most weather modeling.

Key Points from Error Analysis: 
 Damping

m   (for L = m ∆x)

Amplification

CR =

Damping
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• found by with Lax method (doing spatial averaging on 
the advection term) 
 

• increased the numerical stability 

• Significance: acted like adding an unintended physical 
Diffusion term, in addition to the desired advection term.

Key Points from Error Analysis: 
 NWP obeys different physics than real atm

∂T/∂t = –Uo ∂T/∂x

∂T/∂t = –Uo ∂T/∂x + [(∆x)2/(2∆t] ∂2T/∂x2
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• centered in time, centered 
in space

• absolutely numerically 
stable when CR ≤ 1.

• no damping, but …

• … checkerboard issue.  
Solution for black cells 
diverge from the solution 
for white cells. 

• Implication: Need to 
add diffusion between 
white and black cells.

 

Key Points from Error Analysis: 
 Leapfrog
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• found by comparing finite-difference solutions 
Lax single-step solutions for multiple dimensions

• Let CRtheory be the theoretical max Courant 
number that is numerically stable in 1-D for 
linear advection. 
 

• Significance: Smaller time step is needed for a 
full 3-D numerical forecast.

 

Key Points from Error Analysis: 
 CFL theory for 1-D, 2-D, and 3-D

∆tmax < CRtheory · (∆x / Umax)

∆tmax < [CRtheory /(31/2) ]· (∆x / Umax)
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• For linear advection in 1-D, different combinations of time and 
spatial differencing have different stability requirements.  Some 
are never stable.  
 
 
 
 
 
 
      WRF Tech note table 3.1.  Max stable Courant number.

• Significance:  RK3 with 3rd order spacial differencing in WRF 
has much larger CRtheory, enabling you to take larger ∆t .

Key Points from Error Analysis: 
 Runge-Kutta 3rd Order (RK3)
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• forward in time, centered in 
space is OK.

   Has num. stab. criterion: 

• centered in time, centered in 
space is unstable. 

• Caution:  Pro: causes damping. 
Con: can cause phase change 
(+ , - ) of waves at each time 
step. 

Key Points from Error Analysis: 
 Finite Difference for Diffusion

∂T/∂t = D· ∂2T/∂x2   

D ∆t / (∆x)2  ≤  0.5 
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• absolutely numerically stable for any time 
step and grid spacing.

• stable for linear advection and for diffusion

• Crank-Nicholson methods 

• Note:  Requires iteration within each time 
step. (i.e., more costly)

 

Key Points from Error Analysis: 
 Implicit Methods
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• some methods create a 
physical solution AND an 
unwanted computational 
(parasitic / ghost) mode.

• also, wave energy (group 
velocity) moves in the wrong 
direction for 3pt CTCS.

• Significance:  Even if the 
NWP approximation to the 
physical solution might be 
stable, sometimes the parasitic 
modes can be unstable.

Key Points from Error Analysis: 
 Numerical artifacts / ghost modes / 

parasitic modes
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• often affects smaller wavelengths more strongly

• Thus, it is very desirable to filter out (or smooth) 
short wavelengths. 

• Significance: WRF-ARW for odd-order (3, 5, etc.) 
spatial differencing has good implicit damping of the 
smaller wavelengths.

 

Key Points from Error Analysis: 
 Phase and Group Speed Errors
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• Eqs. of motion contain MANY nonlinear terms that contain the product of 2 or 
more dependent variables:  e.g., advection   U ∂T/∂x

• If U and T are thought of as consisting of sums of sines and cosines (i.e., DFT), then 
the nonlinear terms consist of sums of many terms, each of which are products of 
different wavelengths.

• But products of different wavelengths appear to the NWP model as sums of other 
wavelengths, some of which are very short, and others that are so short that they are 
folded/aliased into longer wavelengths.

• Thus, there is an unphysical  
build-up of energy in the  
smaller wavelengths.

• Significance:   
Need to filter  
out the smaller  
wavelengths.

 

Key Points from Error Analysis: 
 Nonlinear Issues.  Very complex.  Overview:



Many NWP Topics  NOT  Discussed
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• Smoothing & Filtering
• Spectral Methods
• Pseudo-spectral Methods
• Time-splitting for Acoustic Modes
• Lateral Boundary Conditions
• Finite Element Methods
• Artificial Intelligence (alternative to NWP)

But you’ve been exposed to a wide range
of NWP textbooks, for further studies. 



The End

Any Questions?

No final exam.

Meanwhile, I will mark your homeworks 
as your submit them.  Please submit by 
27 April.

Also, if you get some of the HW wrong, 
I give you feedback and allow you to 
resubmit until you get it right.

Overall motivation: to not 
use NWP as a “black box”

https://go.blueja.io/
1WKiAyNgFU6alO344Gkrqg

Instructor Eval.


