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Terrain Issues Canadian Terrain Elevation
Modeled terrain is smoothed relative to actual
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British Columbia Terrain Elevation

van- | & CoastRange Interior | Colum.  Rocky
couver |9/ Mountains Plateau Mtns.  Mins.
Island | D
3l Whistler Kelowna Rocky Mtn.
o Trench

Terrain Elev. (m)
[3=Y
Ul
o
o
crrr bbb b b

=

0+~ Padll —— —— —— —— ——
-128 -126 -124 -122 -120 -118 -116 -114
Longitude (°)

+ West-East terrain cross section through Whistler (50.12°N)

5 6

Terrain Elevation vs. Grid Size.

Zooming in Near Whistler Terrain must be smoothed to match grid resolution.

Squamish River Example: If grid size is Ax = 21 km
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How Fine is Fine Enough?
Many valleys are narrower than 1 km

An Obvious Trick: Use finer horizontal grid size

Example: If grid size is Ax =7 km _
Then the modeled terrain is closer to the actual terrain. Good.

And the modeled slopes become steeper (closer to real). Difficult. Violate CFL.
(& still have systematic errors due to location.)
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Post-Processing of Deterministic Forecasts
General procedure:

« Compare past forecasts with past observations (bias = fcst — obs)

» Compute the average past bias

« Assume the future bias is equal to (or related to) the average past bias.
+ Add this bias correction to the raw NWP forecast.

* Notes: different biases at Temperature Mean Error (Bias Estimate)

* Different times of day [Fean o togens IR [<-1e -1+ [ 52 [
+ Different fcst horizon
. . " Da Day |Day ||Day |Da Day ||Da Da
+ Different locations Station Fa ol Pl Pl Pl i P
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. le'f rent |Im t | MAXT24|0.1 0.1 |[0.1 0.1 |0.1 0.2 (0.2 0.2
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+ Compensates for imperfections MAXT24]-0.1 0.0 |01 |00 0.0 [0 0.0 |0.0
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in the NWP dynamics, numerics,
physics, terrain smoothing,
location errors, etc.




Post-Processing of Deterministic Forecasts
Terminology:

* Predictand: output = what you are trying to predict. E.g. temperature bias

* Predictor: input = what you know could be a factor

+ Training data set: used to create the statistics or to find the regression

* Testing data set: independent data used to validate or select the best of
several solutions (to avoid over-fitting: fitting the noise as well as the data)

« Verification data set: another independent data set to show the goodness/
badness of the resulting bias-correction algorithm.

Post-Processing of Deterministic Forecasts
Methods

+ Perfect Prog 49
+ MOS (Model Output Statistics) ®
)
+ UMOS (Updatable MOS) 20
- Short-update-period MOS Tobs
(°C) Q
+ Kalman filters 0 Py
+ Gene-expression programming
[}
+ Artificial Neural networks
-20
=20 2 40
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Post-Processing of Deterministic Forecasts
Perfect Prog

» Used to for variables that the model doesn’t predict directly
» Not used as much any more, because models predict more things

 “perfect” because regresses the pedictand against the observed (not fcst)
predictor.

+ Advantages: not dependent on any one model

+ Disadvantages: doesn’t correct for model errors; requires large data set

Post-Processing of Deterministic Forecasts
MOS

+ MOS = Model output statistics
+ Use 2 or more years of data.
« Longer data set better captures rare events (extreme rains, winds, etc.)

+ Longer data set better captures climate cycles

+ Advantages: corrects for NWP model imperfections

+ Disadvantages: needs to be recomputed each time the NWP model is
hanged; requires large data set; requires re-forecast of past events to
create the 2-years of forecasts.




Post-Processing of Deterministic Forecasts
UMOS

UMOS = Updatable model output statistics
+ Same as MOS, except when a NWP model changes, then

+ Bias correction =
(1 —w) - (Old MOS correction) + w - (New MOS correct.)

+ where weight w =~ (Days Running New NWP) / (365 days)

» Advantages: like MOS, plus adapts faster to NWP model changes.
- Disadvantages: requires large data set for the old NWP MOS.

Post-Processing of Deterministic Forecasts
supMOS

« supMOS = short-update-period model output statistics
+ Bias correction computed via a running average of recent past days
- Today’s correction = average bias from past few weeks

+ Options: Weighted averages (e.g., give more weight to recent biases).
Different averaging times for different forecast horizons.
- use past 5 days for forecast horizon of 1 day,
- use past 3 weeks for forecast horizon of 8 days.

+ Advantages: adapts faster to NWP model changes; adapts faster to
synoptic regime and seasonal changes; needs a small data set

+ Disadvantages: Misses extreme (rare) events.

Post-Processing of Deterministic Forecasts
KF

KF = Kalman filter

Recursive: uses today’s bias to update overall bias correction from yesterday

Predictor - corrector

Advantages: adapts extremely fast to weather & model changes; needs to
save only a few data; handles noisy data; provides “optimum” correction

Disadvantages: Misses extreme (rare) events; misses synoptic regime
changes. If incorrect Kalman gain is used, then gives too much weight to the
most recent bias.

Post-Processing of Deterministic Forecasts
KF

' < N\ Midlatitude weather is more variable and less pre-
INFO + Kalman Filter (KF) dictable in winter. As a result, useful values are:
Rudolf Kalman suggested a method that we can * Winter:  r=0.06, p=0217, t=4days.

* Summer: r=002, B=0132, t=7days.
This Fig. shows 12 171777

anoisy input y ¥ ‘ PIPUNRR
(thin tan line) &

modify to estimate the bias x in tomorrow’s forecast.
It uses the observed bias y in today’s forecast, and
also uses yesterday’s estimate for today’s bias x,;:

x = Xopg +B-(y—x14) KFresponsesx 08
(thicker lines) 306-

TheKalman gain B dependsonratio r=62p; /62\yp, for different 2 |
where 62 is the “predictability-limit” error variance values of the 3
associated with the chaotic nature of a “perfect” ratio . The 0.2 A
weather-forecast model, and 62yyp is the error vari- KF adapts to 04
ance of the operational NWP model. If those error changes, and
variances are steady, then B = 0.5[(r>+41)!/2 — r]. The is recursive. _02_10
e-folding response time (days) is T = ~1/[In(1-B)]. Fig. 20.G
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Post-Processing of Deterministic Forecasts

KF

Ensenbles for BC-UBC EOS Main Rooftop [UBC_RS] - KF

Raw Wind Speed Ckm/h)

6pm 00am 6an

K-Filt Wind Speed (kn/hr)
&
T

i
il

N~

N
il
00am

g A ||
"-'*"“?‘.,".!:!ﬂ!ﬂ:ﬁil‘-ﬂ"““ﬁiiﬂﬂ“

reU LOSEMDIE FOICUsts NQIMAn rieregd duriace 1emperawre

- Forecast valid SPDT 04 APR (6MDT 04 APR) [12UTC 04 APR] 2013

O

GIN

60N

58N

%

1340 132w 130w 128W 126w 124w Ym 1200 118w
Forecast valid SPDT 04 APR (6MDT 04 APR) [12UTC 04 APR] 2013

-40 -35-30 -25-20 -18 -16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 25 30 35 4

oo il e e R"go&mﬁi* %ﬁin on HaXOOan o colour bar: Surfoce Tempgra(ure (c)
Post-Processing o Gene d) Mutated Gene Post-Processing of Deterministic Forecasts

JaxP-AN5el/ bxAT

GEP

/ ae]P-15e1/ bxAT

+ GEP = Gene Expression
Programming (evolution of
algorithms)

b) Expression Tree (phenome)

CHOR

GEP regresses constants

(weights ) AND functions.

+ We've used GEP to create g’f E
ensemble averages, to Qj @ é ED
estimate electric load, to
approximate moist adiabats dz

on thermo diagram, & to
find Tw from T and RH.

® @

Advantages: can find
complicated nonlinear

relationships
a) Algorithm

Disadvantages: Requires
complex algorithms to
optimize.

e
A {explb/(MD)] -1}
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e) New Expression Tree
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ANN = Artificial Neural Network N, ~©_~.</ N
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* mimics connections between neurons ( TN -
- U

+ operates on input data with a sigmoidal
function such as hyperbolic tangent,
error function, or logistic function.

-6 -4 -2 0 2 4 6

+ uses a linear transfer function to combine
hidden node results into output

+ ANN regresses many 10s of weights for a few fixed functions. Example: we
used ANN to predict electric loads for BC Hydro. Had 6 input nodes
(corresponding to different weather and calendar variables), 10 hidden nodes,

and 1 output node (electric load). This ANN had 81 free parameters.

+ Advantages: can find complicated nonlinear relationships

+ Disadvantages:
propagation) to find the best weights; often overfits (fits the noise)

24

Requires complex algorithms (e.g., feed forward, back




Post-Processing of Deterministic Forecasts
CNN

* CNN = Convolutional Neural Network
(a deep learning ANN)

. SIeTel
+ thousands of free parameters (weights)

« used for classifying images (including
weather maps)

Neurons of a convolutional
layer (blue), connected to
their receptive field (red)

Feature maps

Convolutions Subsampling Convolutions Subsampling  Fully connected

https://en.wikipedia.org/wiki/Convolutional_neural_network
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Post-Processing of Deterministic Forecasts
CNN

FCN (modified from Long et al., 2015)

UNet (modified from Ronneberger et al., 2015)

Can be used for:

Downscaling
coarse-res NWP
output to finer-
res. fcsts.

Quality Control

Bias Correction

This example
from Kyle Sha, for
downscaling.

Convokutional layer {same padding, BN, ReLU]
Trans, conw, layer  [stride 2 or 4, valid padding)

Max poolng layes [stide 2] ¢ _':
Unpooling layer  [stide 2] @@  Elementab-wise add

Layer concatenation

oooo

Figure 6. The architectures of two candidate CNN designs for temperature and precipitation downscaling. Numbers
above the building blocks are the number of convolution channels. Vertical axis on the right shows the downsampling
rate from Ox (no downsampling) to 8x (8 times downsampling).

See Kyle Sha’s presentation at NCAR (Dec 2019): https://www.youtube.com/watch?v=mz7Qi-Hy7ho
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Post-Processing of Deterministic Forecasts
CNN

e

\”.,_,é..._; Coarse-resolution
. . NWP output is
- = input to CNN

Downscaled
result using

(c) UNet (d) Nest-UNet

Figure 5. Daily precipitation downscaling example on 2018-01-19 and over British Columbia. (a) is the NCEP
GDAS/FNL input, (b) is the interpolated FNL with ocean grid points masked out. (c, d) are the downscaling outputs of
UNet and Nest-UNet.
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Operational NWP
Overview

24 4
Forecast s
“Horizon”
o 1
= 8 | .
2
€ T
=
o 1
% 12 Figure 20.12
3 Hypothetical forecast schedule, for a 00 UTC initialization.
s A: wait for weather observations to arrive.
o B: data assimilation to produce the analysis (ICs).
= 06 C: coarse-mesh forecast.
z D: fine-mesh forecast, initialized from 00 UTC.
E: fine-mesh forecast initialized from coarse forecast at 12 h.
F: post-processing and creation of products (e.g., weather maps).
00

18 24
(Wall Clock) Real Time (UTC)
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Operational NWP
Model run status at forecast centers

+ See “status” page on UBC web site http://weather.eos.ubc.ca/wxfcst/ (and
give handouts)

« See “current status” under Environmental Models for NCEP web site
http://www.nco.ncep.noaa.gov/

« Computers and their utilization. Sequencing. cron jobs. Time durations for
input, fcst, graphics production.

« AT UBC we have 416 cores in our NWP computer clusters.

- See computer size issues at 09 Most Powerful Weather Computer by.Country
http://cliffmass.blogspot.ca/ 08
2013/02/the-us-weather-

prediction-computer-gap.html

o O 0
o o N

peak capacity (petaflop)
© © o ©
a N v s

Japan ECMWF UKMET S. Korea Canada Germany USINWS

30

Operational NWP
Model run time vs. computer power

d N\

INFO * Moore's Law & Forecast Skill ) (_INFO + Amdahl's Law

Computer architect Gene Amdahl described the
overall speedup factor Sy, of & computer program
as a function of the speedup S, of individual subrou-
tines, where P, is the portion of the total computation
done by subroutine i

sue=[T e ss]”

and where £P; = 1

e programs called profilers can find how
much time it takes to run each component of an NWP
model, such as for the implementation of the Weather
Research & Forecast (WRF) model shown below.

Gordon E. Moore co-founded the integrat-
ed-circuit (computer-chip) manufacturer Intel. In
1965 he reported that the maximum number of tran-
sistors that were able to be inexpensively manufac-
tured on integrated circuits had doubled every year.
He predicted that this trend would continue for anoth-
er decade.

Since 1970, the rate slowed to about a doubling ev-
ery two years. This trend, known as Moore’s Law,
has continued for over 4 decades.

Increasing computer power has enabled improved
NWP models that use finer grids covering larger areas
with more-complicated physics and numerics. Thus
NWP forecast skill has improved concomitant with
computer power.

Fig. 20.F. Portion of tolal run tinre of the

WRF model for some of the major components.

© “ncorp. tend.” = incorporation of fendencies.

© “diff." = diffusion.

* “uvw advect.” = advection of U, V., and W wind
components

o “microplysics™ = hydrometeor parameterizitions.

% meterizations for convective clouds.

. e.” w bowndary layer and surface

parameterizations.

2

109

For example, if graphics-processing units
(GPUs) speed up the microphysics 20 times and
speed up scalar advection by 18 times (e, an 80%
speedup), and the remaining 60.6% of WRF has no
speedup, then overall:

Transistor Count

PRI

T T T T Sarr = 10.163/20 + 0231/1.8 + 0.606/1) " = L35
1960 1980 2000

Year Namely, even though the microphysics portion of the
model is sped up 2000%, the overall speedup of WRF
is 35% in this hypothetical example.

Fig. 20.D. Moore’s Law and forecast skill vs. time,
A

>y
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ATSC 507 NWP - Course Overview
Topics 2020

© N o o~ Db~

Scientific basis for NWP (governing eqs)

Approximations to the governing egs. Flux (conservative) forms.

Vertical coordinate transformations (terrain following, sigma)

The WRF model (Tim Chui). Vapor display software (Nadya Moisseeva)
Horizontal coordinate transformations (map projections, map factors)
Finite-difference methods: spatial and time. Acoustic split time diff. (Chui)
Finite-difference errors: truncation, amplitude, phase, group, nonlinear.
Finite-volume methods. MPAS & FV3. (Chui)

Spectral methods

. Ensemble methods, ensemble avg & spread. Nonlinear dynamics & chaos.
. Verification methods

. Probabilistic forecasting (Thomas Nipen)

. Post-processing methods & Operational forecasting
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ATSC 507 NWP - Course Overview
Methods & Activities 2020
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Textbook readings

Journal paper readings

Derivations, including by students at the blackboard
Understanding WRF (not a black box)

Running WRF & visualizing the output

Student presentations in class of WRF physics
What-if demos using spreadsheets and animations
Samples of code

Homeworks

. Projects

. Crunching numbers

. In-class lab work (graphical interpretation of time diff. schemes)

. Guest lectures (Tim Chui, Nadya Moisseeva, Thomas Nipen, Pedro Odon)
. Flexibility in the computational tools you could use for your HW
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ATSC 507 NWP - Course Overview
Conclusion

| learned a lot. Hope you did too.

-the end-
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