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Verification = a measure of
Forecast Quality

wikipedia commons:

* Accuracy (a BAD measure)
« Skill (accuracy relative to some reference such as:
+ climatology (averaged over 30 years)
* persistence (same as previous weather)

* random (Monte-Carlo, bootstrapping, etc.)

Verification Topics

( * Continuous Variables [T, U, V, P, bounded (RH, Precip)...])

+ Categorical (Binary, yes/no) Events
* Probabilistic & Ensemble Forecasts

* Terrain Issues
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Continuous Variables

Temperature (° C)

')o

* Define variables R T n e BT
A = initial analysis (based on observations)
V = verifying analysis (based on later obs.)
F = deterministic forecast
C = climatological conditions
n = number of grid points being averaged

+ Anomaly = Difference from climatology

F - C = predicted anomaly
A - C = persistence anomaly
V - C = verifying anomaly
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Continuous Variables

Temperature (° C)

')o

- Tendency = change with time A e
F — A = predicted tendency
V — A = verifying tendency
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+ Error = difference from observations or from verifying analysis
F - V = forecast error
A -V = persistence error

« Average (defined) for any variable X. (k = time or grid index)
over n times, over n grid points, or both:

M I
X==—>» X 20.24
— 2. X *(20.24)

-
&

)
S

v

Continuous Variables

Temperature (° C)
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* Mean Error (ME) = bias = systematic error N R T e B

ME=(F-V)=F-V

—o0 t0 0. O = best

» Mean Absolute Error (MAE)
MAE = |F-V|

0t0 . O = best

« Mean Squared Error (MSE) and Root Mean Sq. Error (RMSE)
MSE =(F-V)? 010 o. O = best

RMSE = (F-V)?

0to o=, O = best
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Continuous Variable ] ot
Skill Scores SkillScore= 3¢~ B L g
perfect —ref . 2 -~ > 3
* Mean Squared Error Skill Score (MSESS) O R T e B
MSE
MSESS =1- —t0 1. 1 =Dbest
ref (O=no better than ref.)
* Root Mean Squared Error Skill Score (RMSESS)
RMSE
RMSESS =1-—— — 10 1. 1 = best
RMSEref (O=no better than ref.)
- Mean Absolute Error Skill Score (MAESS)
MAESS:l—M—AE - t0 1. 1 =best
MAE,, (0=no better than ref.)

where persistence or climate is often used as the reference

+ Bias Ratio (BR) = systematic error

Continuous Bounded Variable:
Precipitation

0Oto . 1 = Dbest

se=(L]

+ Degree of Mass Balance (DMB)

DMB:i 0 to . 1 = best
\%
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* Pearson product-moment Correlation Coefficient (r):
By
r= ?_2' -1 to 1.
(F)" NV

1 = best
(-1 = F varies opposite to V)
F'=F-F and V'=V-V

-1to1. 1 =Dbest
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Solved Example (§)

Given the following synthetic analysis (A), NWP
forecast (F), verification (V), and climate (C) fields of
50-kPa height (km). Each field represents a weather
map (North at top, East at right).

Find the mean error of the forecast and of persis-
tence. Find the forecast MAE and MSE. Find MSEC
and MSESS. Find the correlation coefficient between
the forecast and verification. Find the RMS errors and
the anomaly correlations for the forecast and persis-
tence.

Analysis:
53 53 5.3 54
54 53 54 55
55 54 55 56
5.6 55 56 5.7
5.7 5.6 5.7 5.7
Forecast:
55 5.2 52 53
56 5.4 53 54
56 55 54 55
57 56 55 5.6
5.7 5.7 5.6 5.6
Verification:
54 53 53 53
55 5.4 53 54
55 55 54 55
5.6 5.6 5.5 56
5.6 5.7 5.6 5.7
Climate:
54 54 54 54
54 54 54 54
55 55 5.5 55
5.6 56 5.6 56
57 5.7 5.7 5.7

Solution

Use eq. (20.25): MEg,pco = 0.01 km = 10m

Use eq. (20.26): ME o istence = 15.m

Use eq. (20.27): M/((.' = 40m

Use eq. (20.28): MSEj,. . =0.004km? = 4000 m?
Use eq. (20.28): MSEC = 0.0044 km? = 4500 m?2
Use eq. (20.29): MSESS = 1 - (4000/4500) = 0.11

Use eq. (20.30): RMSEgpecss = 63m

Use eq. (20.30): RMSE persistence = 87 m

Use eq. (20.31): r =092 (dimensionless)

Use eq. (20.33): forecast anomaly correlation = 81.3%
Use eq. (20.34): persist. anomaly correlation = 7.7%

Check: Units OK. Physics OK.

Discussion: Analyze (i.e., draw height contour maps
for) the analysis, forecast, verification, and climate
fields. The analysis shows a Rossby wave with ridge
and trough, and the verification shows this wave mov-
ing east. The forecast amplifies the wave too much.
The climate field just shows the average of higher
heights to the south and lower heights to the north,
with all transient Rossby waves averaged out.

Verification Topics

* Continuous Variables [T, U, V, P, bounded (RH, Precip)...]

( + Categorical (Binary, yes/no) Events

)

* Probabilistic & Ensemble Forecasts

* Terrain Issues

Categorical (yes/no)

* True binary:
* Snow / no-snow
* Rain / no-rain
* Sun / shade
* Threshold exceedence
* T < Tthreshold
* Precip > Precip.threshold
* Wind > Wind.threshold

. etc.

(@) Observation
Yes No
Contingency Table ‘g Yes Hit False Alarm
g ; Correct Rejection
e No Miss or ]
Correct Negative
(b) Observation
Yes No
@ Yes a b
8
g
L No c d
Figure 20.23
Contingency table for a binary (Yes/No) situation. “Yes” means
the event occurred or was forecast to occur. (a) Meaning of cells.
(b) Counts of occurrences, wherea + b+ c+d =n. (c) Expense (C) Observation
matrix, where C = cost for taking protective action (i.e., for miti- Yes No
gating the loss), and L = loss due to an unmitigated event.
O Mitigated Loss Cost
7]
g () (©)
1
e N Loss No Cost
° ) (0)
16




The bias score B indicates over- or under-pre-

Blnary diction of the frequency of event occurrence: Blnary The hit rate H is the portion of actual occurrenc-
Scores g2t b (20.36) Scores es (obs. = “YES”) that were successfully forecast:
a+c ' H=-2
The portion correct PC (also known as portion Ta+c R
ot forecastscomect BFC)H s It is also known as the probability of detection
_a+d POD.
e n telo7) The false-alarm rate F is the portion of non-
But perhaps a portion of PC could have been due to occ111r rfences (9bservat1on = “NO”) that were incor-
random-chance (dumb but lucky) forecasts. Let E Tectly: forecast:
be this “random luck” portion, assuming that you P b
made the same ratio of “YES” to “NO” forecasts: b+d *(2041)
E= (ﬂ)(ﬂ}.(ﬂ)(ﬂ) (20.38) Don't confuse this with the false-alarm ratio FAR,
n n n n which is the portion of “YES” forecasts that were
We can now define the portion of correct forecasts WIONg: b
that was actually skillful (i.e., not random chance), FAR = b (2042)
which is known as the Heidke skill score (HSS): BEE
Hes=2E—E (20.39)
1-E
17 18
Binary Binary Suppose we consider the portion of hits that
Scores Scores might have occurred by random chance a,:

A true skill score TSS (also known as Peirce’s
skill score PSS, and as Hansen and Kuipers’
score) can be defined as

TSS=H-F (20.43)
which is a measure of how well you can discrimi-
nate between an event and a non-event, or a mea-
sure of how well you can detect an event.

A critical success index CSI (also known as a
threat score T9) is:

a

CSI =
a+b+c

(20.44)

2, = w (20.45)
n
Then we can subtract this from the actual hit count
to modify CSS into an equitable threat score ETS,
also known as Gilbert’s skill score GSS:

a-a,

GSS=—T—
a—a,+b+c

(20.46)

which is also useful for rare events.

For a perfect forecasts (where b = ¢ = 0), the values h
of these scores are: B=1, PC=1, HSS=1,H=1,F
= EAR= 0SS = ESS =INESS =" )

A

For totally wrong forecasts (where a = d = 0): B
B =0 to o, PC = 0, HSS = negative, H =0, F = 1,
FAR =1, TSS =-1,CSS = 0, GSS = negative.
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Binary
Scores

Solved Example
Given the following contingency table, calculate all
the binary verification statistics.
Observation
Yes No
Forecast Yes: 90 50

No 75 150

Solution:
Given: 2=90, b=50, c=75, d=150
Find: B, PC, HSS, H, F, FAR, TSS, CSI, GSS

First, use eq. (20.35): 7 =90 + 50 + 75 + 150 = 365
So apparently we have daily observations for a year.
Use eq. (20.36): B = (90 +50) / (90 + 75) = 0.85
Use eq. (20.37): PC = (90 +150) / 365 = 0.66
Use eq. (20.38):
E = [(90+50)-(90+75) + (150+50)-(150+75)]/(365?)
E = 68100 / 133225 = 0.51
Use eq. (20.39): HSS = (0.66-0.51) / (1-0.51) = 0.31
Use eq. (20.40): H = 90 / (90 +75) = 0.55
Use eq. (20.41): F = 50 / (50 +150) = 0.25
Use eq. (20.42): FAR = 50 / (90 + 50) = 0.36
Use eq. (20.43): TSS = 0.55-0.25 = 0.30
Use eq. (20.44): CSI = 90 / (90 + 50 +75) = 0.42
Use eq. (20.45): a, = [ (90+50)-(90+75)]/365 = 63.3
Use eq. (20.46):
GSS = (90-63.3) / (90-63.3+50+75) = 0.18

21

Verification Topics

* Continuous Variables [T, U, V, P, bounded (RH, Precip)...]

+ Categorical (Binary, yes/no) Events

( * Probabilistic & Ensemble Forecasts )

* Terrain Issues
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Probability Fcst
Verification

Brier Skill Score
For calibrated probability forecasts, a Brier skill
score (BSS) can be defined relative to climatology

as
o 2
Y. (P —0%)
BSS=1-—Fk=1

2o)lze)

where py is the forecast probability (0 < py < 1) that
the threshold will be exceeded (e.g., the probabil-
ity that the precipitation will exceed a precipitation
threshold) for any one forecast k, and N is the num-
ber of forecasts. The verifying observation oy = 1 if
the observation exceeded the threshold, and is set to
zero otherwise.

BSS =0 for a forecast no better than climatology.
BSS =1 for a perfect deterministic forecast (i.e., the
forecast is py = 1 every time the event happens, and
px = 0 every time it does not). For probabilistic fore-
casts, 0 < BSS < 1. Larger BSS values are better.

*(20.47)
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Probability Fcst
Verification

Reliability

How reliable are the probability forecasts?
Namely, when we forecast an event with a certain
probability, is it observed with the same relative
frequency? To determine this, after you make each
forecast, sort it into a forecast probability bin (j) of
probability width Ap, and keep a tally of the number
of forecasts (n;) that fell in this bin, and count how
many of the forecasts verified (1,; for which the cor-
responding observation satisfied the threshold).

For example, if you use bins of size Ap = 0.1, then
create a table such as:

bin index bin center fcst. prob. range n; n,;
j=0 pi=0 0<p <005 ny ny
j=1 pj=01 005 < p <015 mn ngy
j =2 p] =02 0.15 < Pr < 0.25 np Ny
etc. wtere e st e
j=9 pj=09 085 <pp <095 ng mny

j= 10=] 095 < Pk < 1.0 ni0 Mo10

A plot of the observed relative frequency (1,;/n;) on
the ordinate vs. the corresponding forecast probabil-
ity bin center (p;) on the abscissa is called a reliabil-
ity diagram. For perfect reliability, all the points
should be on the 45° diagonal line.
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Ensemble Fcst
Verification

Reliability
Diagram
example

observed frequency

forecast probability

MCCOLLOR AND STULL

1 1
Threshold § mm day Threshold 10 mm day

1.0,
0.8 0.8

0.6 0.6

o
%05 1 0 05 1

0 0.2 04 0.6 0.8 1.0 9 0 0.2 04 0.6 08 1.0

Threshold 25 mm day ' Threshold 50 mm day '

1.0y 1.0,

08

0.6)

0.5 0.5

0 (

0 05 1 0 05 1
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FiG. 12. Reliability diagrams from the full 11-member ensemble for the day-1 forecasts for precipita-
tion thresholds of 5, 10, 25, and 50 mm day ™. The abscissas in these graphs show the forecast probability,
and the ordinates are the observed relative frequency. The straight diagonal line indicates perfect
reliability. The insct diagrams depict sharpness, where the abscissa is forecast probability and the
ardinate is the relative frequency of use.
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Probability Fcst
Verification

Reliability Diagram

Ideally, the probabilistic forecast—observation points
lie on the diagonal of the reliability diagram, indicating
the event is always forecast at the same frequency it is
observed. The reliability component of the Brier score
in a graphical representation is the weighted, averaged,
squared distance between the reliability curve and the
45° diagonal line. If the points lie above (below) the
diagonal, it means the event is underforecast (overfore-
cast). Reliability curves with a zigzag shape centered on
the diagonal indicate good reliability represented by a
small sample size. Poor reliability can be improved sub-
stantially by appropriate a posteriori calibration and/or
postprocessing of forecasts delivered from an estab-
lished system, though it is a difficult task to achieve in
a real-time operational EPS (Atger 2003).
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A Brier skill score for relative reliability

(BSS,eligpitity) i

Bssreliability = ]N

I

Z[("j'pj)_"oj]z

i=0
N
‘| N- z Ok
k=1

(20.48)

%
k=1

where BSS ,jipility = 0 for a perfect forecast.
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Solved Example (§)

Given the table below of k = 1 to 31 forecasts of
the probability py that the temperature will be below
threshold 20°C, and the verification oy = 1if indeed the
observed temperature was below the threshold.

(@) Find the Brier skill score.
bins of width Ap = 0.2, plot a reliability diagram, and

Probability Fcst
Verification

find the reliability Brier skill score.

(b) For probability

k| px |og| BN | j k| pr |og| BN | j

1/043/0/018 |2 B16(089|1 001 | 4

2098|1000 |5 9817|0130 002 |1

3/053(1(022|3 Rg18|092|1(001 |5

4 (0331|045 | 2 §19(086|1|002 |4

5/050|0({025|3 20|09 |1(001 |5

6(003(0|000| 0 #21(083/0)|069 |4

7079|1004 | 4 §22|000|0|000|0

8/023|0(005| 1 §23|100|1/[000 |5

9020|1064 | 1 §24/069(0|048 |3
10/059(1]017 | 3 §25|036|0| 013 | 2
11{026 /0| 007 [ 1 §26(056|1|019 | 3
12/076 |1 (006 | 4 §27|046|0 | 021 | 2
13/017 |0 003 | 1 §28|063|0|040 |3
14(030/0(009 |2 §29(010|0 (001 |1
15/096 |1| 000 (| 5 §30(040|1|036 | 2
311073111007 | 4

Solution

Given: The white portion of the table above.
Find: BSS =?, BSSigpility = ? and plot reliability.

(a) Use eq. (20.47). The grey-shaded column labeled BN
shows each contribution to the numerator (p; — 0p)? in
that eq. The sum of BN = 4.86. The sum of oy = 16.
Thus, the eq is: BSS =1-[4.86 / {16 -(31-16)} | = 0.98

(b) There are | = 6 bins, with bin centers at p;=0,02,
04, 0.6, 0.8, and 1.0. (Note, the first and last bins are
one-sided, half-width relative to the nominal “cen-
ter” value.) I sorted the forecasts into bins using j =
round(py/Ap, 0), giving the grey j columns above.

For each j bin, I counted the number of forecasts

n:

]

falling in that bin, and I counted the portion of those
forecasts that verified 7,;. See table below:

j | pj | 1| moj|noi/n;| num
ofof2f[o0] o 0

1{02|6| 1017 (004
2(04)|6(2 033|016
3|06(6|3|050]036
4|08 (6|5 083|004
5110(5(51] 1 0

The observed relative fre-
quency 7,i/n; plotted against
pj is the reliability di 3

1

Q
8

A

o _onoi/ni o
Re

/(

n

o

0 02 04 P 08 1

Use eq. (20.48). The contribution to the numerator
from each bin is in the num column above, which sums
t0 0.6 . Thus: BSS,,_.l,vab,»,i,y = 06/ {16 '(31—16)} = 0.0025
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Probability Fcst

Probability Fcst

Verification Verification Continuous Ranked Probability Skill Score
b. Continuous ranked probability score The CRPS components can be converted to a posi-
The continuous ranked probability score (CRPS; tively oriented skill score (CRPSS) in the same manner
Hersbach 2000) is a complete generalization of the Brier that the Brier score components are converted to a skill
score. The Brier score (Brier 1950; Atger 2003; McCollor score (BSS; McCollor and Stull 2008b):
The CRPS can be interpreted as an integral over all
possible Brier scores. A major advantage of the Brier Resol Reli
score is that it can be decomposed into a reliability CRPSS = Unc _ Unc
component, a resolution component, and an uncertainty = relative resolution — relative reliability
component (Murphy 1973; Toth et al. 2003). In a similar — CRPS — CRPS _
fashion, Hersbach (2000) showed how the CRPS can be RelResol RelReli:
decomposed into the same three components:
CRPS = Reli — Resol + Unc. 2)
29 30
Probabiity & )
Fcst LA Probability Fcst
o B 06 By TP
Verification % 5| M Verification
& 02} B Bk 1 (
§ 0 - F—k—r———x P i - g e e * . R .
L | | N
12345678 9101112131415 - Linear Error in Probability k- % ¢k
F as D‘ P, 6. The LEPS skil e s close &
& 1 ——— Space (LEPS) R e e
=]
@ U8 Linear error in probability space (LEPS) is defined
Z as the mean absolute difference between the cumula-
& tive frequency of the forecasts and the cumulative fre-
pe quency of the observations (Déqué 2003). LEPS en-
= ~02 sures that error in the center of the distribution is

9 10 11 12 13 14 15
Forecast Day
FIG. 4. Continuous ranked probability skill scores for ensemble
(top) daily maximum and (bottom) daily minimum temperature
anomaly forecasts. The CRP skill score (circles) equals the relative

resolution (x markers) less the relative reliability (asterisks).
31

treated with more importance than error found in the
extreme tail of the distribution. A LEPS skill score can
be defined with the climatological median as a refer-
ence (Wilks 1995).
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Probability Fcst

Verification ROC diagram

ROC Diagram

A Relative Operating Characteristic (ROC)
diagram shows how well a probabilistic forecast can
discriminate between an event and a non-event.
For example, an event could beheavy rain that causes
flooding, or cold temperatures that cause crops to
freeze. The probabilistic forecast could come from
an ensemble forecast, as illustrated next.
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Probability Fcst

Verification ROC diagram

Suppose that the individual NWP models of an
N = 10 member ensemble made the following fore-
casts of 24-h accumulated rainfall R for Day 1:

NWP model R (mm) NWP model R (mm)
Model 1 8 Model 6 4
Model 2 10 Model 7 20
Model 3 6 Model 8 9
Model 4 12 Model 9 5
Model 5 11 Model 10 7

Consider a precipitation threshold of 10 mm.
The ensemble above has 4 models that forecast 10
mm or more, hence the forecast probability is p; =
4/N =4/10 = 40%. Supposed that 10 mm or more of
precipitation was indeed observed, so the observa-
tion flag is set to one: 0; = 1.

34

Probability Fcst

Verification ROC diagram

On Day 2, three of the 10 models forecast 10 mm
or more of precipitation, hence the forecast probabil-
ity is pp = 3/10 = 30%. On this day precipitation did
NOT exceed 10 mm, so the observation flag is set
to zero: 0p = 0. Similarly, for Day 3 suppose the
forecast probability is p3 = 10%, but heavy rain was
observed, so 03 = 1. After making ensemble fore-
casts every day for a month, suppose the results are
as listed in the left three columns of Table 20-4.

35

Table 20-4. Sample calculations for a ROC diagram. Forecast flags f are shown under the probability thresholds.

Probability Threshold pyreshord (%)
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Probability Fcst

Verification ROC diagram

An end user might need to make a decision to
take action. Based on various economic or political
reasons, the user decides to use a probability thresh-
old of puresnors = 40%; namely, if the ensemble model
forecasts a 40% or greater chance of daily rain ex-
ceeding 10 mm, then the user will take action. So
we can set forecast flag f = 1 for each day that the
ensemble predicted 40% or more probability, and f =
0 for the other days. These forecast flags are shown
in Table 20-4 under the py, esho1a = 40% column.
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Table 20-4. Sample calculations for a ROC diagram. Forecast flags f are shown under the probability thresholds.

Protfability Fhreshold pyresioi (%)

0y

Day | o |p(% g 10 20 30 40 50 60 70 80 % | 100
1 i 10 1 1 1 1 1 0 0 0 0 0 0
2 0 30 1 1 1 1 0 0 0 0 0 0 0
3 1 10 1 1 0 0 0 0 0 0 0 0 0
4 1 50 1 1 1 1 1 1 0 0 0 0 0
5 0 60 1 1 1 1 1 1 1 0 0 0 0
6 0 30 1 1 1 1 0 0 0 0 0 0 0
7 0 40 1 1 1 1 1 0 0 0 0 0 0
8 1 80 1 1 1 1 1 1 1 1 1 0 0
9 0 50 1 1 1 1 1 1 0 0 0 0 0
10 1 20 1 1 1 0 0 0 0 0 0 0 0
11 1 90 1 1 1 1 1 1 1 1 1 1 0
12 0 20 1 1 1 0 0 0 0 0 0 0 0
13 0 10 1 1 0 0 0 0 0 0 0 0 0
14 0 10 1 1 0 0 0 0 0 0 0 0 0
15 1 70 1 1 1 1 1 1 1 1 0 0 0
16 0 70 1 1 1 1 1 1 1 1 0 0 0
17 1 60 1 1 1 1 1 1 1 0 0 0 0
18 1 90 1 1 1 1 1 1 1 1 1 1 0
19 1 80 1 1 1 1 1 1 1 1 1 0 0
20 0 80 1 1 1 1 1 1 1 1 1 0 0
21 0 20 1 1 1 0 0 0 0 0 0 0 0
2 0 10 1 1 0 0 0 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0 0 0 0
25 1 70 1 1 1 1 1 1 1 1 0 0 0
26 0 10 1 1 0 0 0 0 0 0 0 0 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0
28 1 90 1 1 1 1 1 1 1 1 1 1 0
29 0 20 1 1 1 0 0 0 0 0 0 0 0
30 1 80 1 1 1 1 1 1 1 1 1 0 0

a= 13 13 2 1 11 10 9 8 6 3 0
Contingency b= | 17 14 10 7 5 4 3 2 1 0 0
Table Values c= 0 0 1 2 2 3 4 5 7 10 13
d= 0 3 7 10 12 13 14 15 16 17 17
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Verification ROC diagram

Other users might have other decision thresh-
olds, so we can find the forecast flags for all the other
probability thresholds, as given in Table 20-4. For
an N member ensemble, there are only (100/N) + 1
discrete probabilities that are possible. For our ex-
ample with N = 10 members, we can consider only 11
different probability thresholds: 0% (When no mem-
bers exceed the rain threshold), 10% (when 1 out of
the 10 members exceeds the threshold), 20% (etc.), . .
. 90%, 100%.
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Table 20-4. Sample calculations for a ROC diagram. Forecast flags f are shown under the probability thresholds.
(

5 y % Probability Threshold pyrechord (%) h
e P 0 10 20 30 40 50 60 70 80 % | 100
1 i 10 1 1 1 1 1 0 0 0 0 0 0
2 0 30 1 1 1 1 0 0 0 0 0 0 0
3 1 10 1 1 0 0 0 0 0 0 0 0 0
4 1 50 1 1 1 1 1 1 0 0 0 0 0
5 0 60 1 1 1 1 1 1 1 0 0 0 0
6 0 30 1 1 1 1 0 0 0 0 0 0 0
7 0 40 1 1 1 1 1 0 0 0 0 0 0
8 1 80 1 1 1 1 1 1 1 1 1 0 0
9 0 50 1 1 1 1 1 1 0 0 0 0 0
10 1 20 1 1 1 0 0 0 0 0 0 0 0

11 1 90 1 1 1 1 1 1 1 1 1 1 0
12 0 20 1 1 1 0 0 0 0 0 0 0 0
13 0 10 1 1 0 0 0 0 0 0 0 0 0
14 0 10 1 1 0 0 0 0 0 0 0 0 0
15 1 70 1 1 1 1 1 1 1 1 0 0 0
16 0 70 1 1 1 1 1 1 1 1 0 0 0
17 1 60 1 1 1 1 1 1 1 0 0 0 0
18 1 90 1 1 1 1 1 1 1 1 1 1 0
19 1 80 1 1 1 1 1 1 1 1 1 0 0
20 0 80 1 1 1 1 1 1 1 1 1 0 0
21 0 20 1 1 1 0 0 0 0 0 0 0 0
2 0 10 1 1 0 0 0 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0 0 0 0
25 1 70 1 1 1 1 1 1 1 1 0 0 0
26 0 10 1 1 0 0 0 0 0 0 0 0 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0
28 1 90 1 1 1 1 1 1 1 1 1 1 0
29 0 20 1 1 1 0 0 0 0 0 0 0 0
30 1 80 1 1 1 1 1 1 1 1 1 0 0
a= | 13 13 12 1 11 10 9 8 6 3 0

Contingency b= | 17 14 10 7 5 4 3 2 1 0 0
Table Values c= 0 0 1 2 2 3 4 5 7 10 13
d= 0 3 7 10 12 13 14 15 16 17 17
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Probability Fcst

Verification ROC diagram

For each probability threshold, create a 2x2 con-
tingency table with the elements 4, b, ¢, and d as
shown in Fig. 20.23b. For example, for any pair of
observation and forecast flags (o f;) for Day j, use

a = count of days with hits (o fa=@Q,1.
b = count of days with false alarms (o fl ) = {0 1).
¢ = count of days with misses jj =i1,.0).

d = count of days: correct rejection (o f] ) = (0, 0).
For our illustrative case, these contmgency—table ele-
ments are shown near the bottom of Table 20-4.
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Table 20-4. Sample calculations for a ROC diagram. Forecast flags f are shown under the probability thresholds.

o p % Probability Threshold pyestord (%)
4 P 0 10 20 30 40 50 60 . 70 80 | 9 100
1 1 20 1 1 1 1 1 0 0l eanveion
2 0 30 1 1 1 1 0 0 0 ves
3 1 10 1 1 0 0 0 0 0
4 1 50 1 1 1 1 1 1 of § ™ a b
5 0 60 1 1 1 1 1 1 1y ¢
6 0 30 1 1 1 1 0 0 0 No c a
7 0 40 1 1 1 1 1 0 0
8 1 80 1 1 1 1 1 1 1 1 1 0 t

9 0 50 1 1 1 1 1 1 0 0 0 0 0
10 1 20 1 1 1 0 0 0 0 0 0 0 0
11 1 90 1 1 1 1 1 1 1 1 1 1 0
12 0 20 1 1 1 0 0 0 0 0 0 0 0
13 0 10 1 1 0 0 0 0 0 0 0 0 0
14 0 10 1 1 0 0 0 0 0 0 0 0 0
15 1 70 1 1 1 1 1 1 1 1 0 0 0
16 0 70 1 1 1 1 1 1 1 1 0 0 0
17 1 60 1 1 1 1 1 1 1 0 0 0 0
18 1 90 1 1 1 1 1 1 1 1 1 1 0
19 1 80 1 1 1 1 1 1 1 1 1 0 0
20 0 80 1 1 1 1 1 1 1 1 1 0 0
21 0 20 1 1 1 0 0 0 0 0 0 0 0
2 0 10 1 1 0 0 0 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0 0 0 0
25 1 70 1 1 1 1 1 1 1 1 0 0 0
26 0 10 1 1 0 0 0 0 0 0 0 0 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0
28 1 90 1 1 1 1 1 1 1 1 1 1 0
29 0 20 1 1 1 0 0 0 0 0 0 0 0
30 1 80 1 1 1 1 1 1 1 1 1 0 0
a= |13 13 12 1 1 10 9 8 6 3 0
Contingency b= || 17 14 10 7 5 4 3 2 1 0 0
Table Values = c= 0 0 1 2 2 3 1 5 7 10 13
d= 0 3 Z 10 12 13 14 15 16 1Z 17
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Probability Fcst

Verification ROC diagram

Next, for each probability threshold, calculate the
hit rate H = a/(a+c) and false alarm rate F = b/(b+d),
as defined earlier in this chapter. These are shown
in the last two rows of Table 20-4 for our example.
When each (F, H) pair is plotted as a point on a graph,
the result is called a ROC diagram (Fig. 20.24).
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Table 20-4. Sample calculations for a ROC diagram. Forecast ﬂa&s  f are shown under the probability thresholds.
Pmbability Threshold Pyreshold (%)
Day | o pCO\E G | 10 | 20 50 60 70 80 | 90 | 100
1 1 10 T T T 1 T 0 0 0 0 0 o

2 0 30 1 1 1 1 0 0 0 0 0 0 0
3 1 10 1 1 0 0 0 0 0 0 0 0 0
o 4 1 50 5 1 1 1 1 1 0 0 0 0 0
5 0 60 1 1 1 1 1 1 1 0 0 0 0
6 0 30 1 1 1 1 0 0 0 0 0 0 0
Z 0 40 1 1 1 1 1 0 0 0 0 0 0
8 1 80 1 1 1 1 1 1 3 ¥ 1 0 0
9 0 50 1 1 1 1 1 1 0 0 0 0 0
10 1 20 1 1 1 0 0 0 0 0 0 0 0
1 1 9 1 1 1 1 ik 1 1 1 1 1 0
12 0 20 1 1 1 0 0 0 0 0 0 0 0
13 0 10 1 1 0 0 0 0 0 0 0 0 0
14 0 10 1 1 0 0 0 0 0 0 0 0 0
15 1 70 1 1 1 1 1 1 1 1 0 0 0
16 0 70 T 1  § 1 1 1 1 1 0 0 0
17 1 60 1 1 1 1 1 1 i | 0 0 0 0
18 1 90 1 1 1 1 1 1 1 1 1 1 0
19 1 80 1 1 1 1 1 1 1 i | 1 0 0
20 0 80 1 X 1 1 1 1 1 1 1 0 0
21 0 20 1 1 1 0 0 0 0 0 0 0 0
22 0 10 1 1 0 0 0 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0 0 0 0
25 1 70 1 1 1 1 1 1 ! 1 0 0 0
26 0 10 1 1 0 0 0 0 0 0 0 0 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0
28 1 90 1 1 1 1 1 1 1 1 1 0
29 0 20 1 1 1 0 0 0 0 0 0 0 0
30 1 80 1 1 1 1 1 1 1 1 1 0 0
a= 13 13 12 1 1 10 9 8 6 3 0
Contingency b= 17 14 10 7 5 4 3 2 1 0 0
Table Values c= 0 0 1 2 2 3 4 5 7 10 13
d= 0 3 7 10 12 13 14 15 16 17 17

HitRate: H=a/(@+)= | 100 100 092 085 085 077 069 062 046 023 000

False Alarm Rate: F=b/(b+d)| 1.00 0.82 0.59 0.41 0.29 0.26 018 012 0.06 0.00 0.00
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ROC
diagram

Figure 20.24
ROC diagram plots hit rate (H) vs. false-alarm rate (F) for a
range of probability thresholds (py,).
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Probability Fcst

Verification ROC Skill Score

Let A = area under roc curve (shaded in fig. below)

1

Define a ROC skill score: 0.8-
SSroc=RA) -1 w7
0.4 -

0.2

SSroc = 1 for perfect

discrimination, 0 02 04 06 08 1

SSroc =0 for zero
discrimination.

Figure 20.24

range of probability thresholds (py,).

ROC diagram plots hit rate (H) vs. false-alarm rate (F) for a
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ROC
ROC Day 1 Tmax(°C)
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ROC 0.9}
example il

Change

False Alarm Rate
=}
N

with o
forecast O'q |
horizon .
(days). )

0.1 02 03 04 05 06 07 08 09 1.0
Hit Rate

FIG. 6. ROC area plots for a subset of the forecast period for a
daily maximum temperature anomaly +5°C threshold. The plots
range from an ROC curve for day 2 (dotted line), 4 (dot—-dashed
line), 6 (solid line), 8 (heavy dotted line), 10 (heavy dot-dashed
line); and 12 (heavy solid line). The dashed line is the zero-skill
line.
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Ensemble Fcst Verification

* Rank Histogram
_or_
Talagrand diagram

Count number of
observations petween
ensemble members that
have been sorted (ranked)
from lowest value (of
temperature, wind, etc.) to
highest.

10% |

ensi

ens?2 ensl3 ens4d

Ensemble Fcst Verification

A Flatness Score for the rank histogram:

M+1

K= 2,

i=1

) o

measures the deviation of the histogram from a hori-
zontal line. For a reliable system, the base value is Ay =

NM/(M + 1). The ratio

0

= A/Ag @)

where a value closer to 1 is better.

si is the count of obs

in histogram bar .

49 50
. Ensemble e
MCCOLLOR AND STULL The Brier skill score is then expressed as
20% 20% cht 1 liabil
Ensemble Fcst Verification o BSS = o =Y
- 15% Verlflcatlon uncertainty  uncertainty
. i MCCOLLOR AND STULL = relative resolution — relative reliability.
. . 1.0 o - A perfect forecast would have the relative resolution
|nterpretat|0n. 5% % | i K‘;:;‘::m equal to 1 and the relative reliability equal to 0.
. 08 ) . Relutive |
Shape : ensemble is 20% 20% Brier Skill Score - Brier Skill Score Resolution
. Day six - Day cight 06 W -
e U-shaped: underdispersive , | |
e e 04 1 | Relative 1 Relative \
. . . Reliability | Reliability
¢ hill-shaped: overdispersive . 1 |
02 11 |
o flat . perfect oo LIS mE S | e S

Day twelve

:

FIG. 10. Rank histograms for the ensemble of daily maximum temperatures for (top to bottom)

days 2, 4, 6,8, 10, and 12
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Day |

Wallll @ hires8 [ mres6 [ vhiresS

Day 2

c 1
Threshold 5 mm day

FiG. 8. BSS (1 is perfect), relative reliability (0 is perfect), and relative resolution (1 is

perfect) for the SREFs for forecast days 1 and 2. The precipitation threshold is S mm day ™.
i (from 108 km down to 4 km for all

The confi ing all 11 bl b

three models) performs better for the day-1 forecast than do the other configurations with

fewer ensemble members. The four SREF configurations show

similar Brier skill scores for

the day-2 forecast. Note that resolution deteriorates in the day-2 time frame while rehability

is consistent for both the day-1 and day-2 forecasts.
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Ensemble Fcst

Verification Sharpness

Associated with reliability is sharpness, which char-
acterizes the relative frequency of occurrence of the
forecast probabilities. Sharpness is often depicted in a
histogram indicating the relative occurrence of each
forecast probability category. If forecast probabilities
are frequently near 0 or near 1, then the forecasts are
sharp, indicating the forecasts deviate significantly from
the climatological mean, a positive attribute of an en-
semble forecast system. Sharpness measures the vari-
ability of the forecasts alone, without regard to their
corresponding observations; hence, it is not a verifica-
tion measure in itself. In a perfectly reliable forecast
system, sharpness is identical to resolution.
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Ensemble Fcst

Verification Resolution

Jj- Resolution

A useful probabilistic forecast system must be able to
a priori differentiate future weather outcomes, so that
differing forecasts are, in fact, associated with distinct
verifying observations. This is the most important at-
tribute of a forecast system (Toth et al. 2003) and is
called resolution.

Resolution cannot be improved through simple ad-
justment of probability values or statistical postprocess-
ing. Resolution can be gained only by improving the
actual forecast model engine that produces the fore-
casts.
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Ensemble Fcst

Verification Prob. Integral Transform (PIT)
Let fi(x) = forecast prob. density for the value 4
x of any variable (e.g., Temperature) ft

forecast prob. distr.

Let F,(x) denote the forecasted cumulative distribu-
tion function (CDF) given by

Fx)= J;f,(.s) ds. )

In addition, let x, denote the observed state of X at time
t. Let p, denote the CDF value corresponding to the
observed state:

P, =F(x). 2

Often, p, is called the probability integral transform

value (PIT value) corresponding to the observation. observed

value of x

Good fest if pt = p, where p = observed cum. freq at x:.
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Prob. Fcst Verif. Ignorance Score (IGN)

LY —log, [£,(x,)] (21)

6N =1 &

IGN rewards forecasts that place high confidence in the
value where the observation falls. Low ignorance scores
are desired.

where fi(xi) = forecast prob. density for the observed
value xt of any variable (e.g., Temperature)
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Example
of IGN

Ignorance score

s - .o oo o
0 3 6 9 1 15 18 21
Hours since last observation

Top graph 1| e
= 0 3 6 9 12 15 18 21
shows :

Hours since last observation
improvement oy o : e
0

score. larger Mo02 03 e W00
. d =
is better. £
w 75F
< 50
= i |
22 : o
0 3 6 9 12 15 18 21

Hours since last observation

FIG. 5. Verification statistics for the probabilistic forecasts used in the study. (a) Reduction
(improvement) of the ignorance score by the updated probabilistic forecast relative to the
original probabilistic forecast. Each of the five lines represents the score for a different station.
(b) Percentage improvement in the CRPS by the updated probabilistic forecast. (¢) PIT his-
togram of the updated forecasts (black bars) and the original forecasts (white bars), indicating
the reliability of the forecasts. (d) Percentage improvement in mean absolute error of the
median of the updated probability distributions relative to the median of the original distri-
bution.

Verification Topics

* Continuous Variables [T, U, V, P, bounded (RH, Precip)...]
+ Categorical (Binary, yes/no) Events
* Probabilistic & Ensemble Forecasts

( * Terrain Issues )

Terrain Issues Canadian Terrain Elevation
Modeled terrain is smoothed relative to actual
terrain. BC AB| SK MB ON
_ 3000 3
Mountain tops are cut off, and valleys are filled in. E 2500 3 '
More so for coarser grids. § 2000 %

W 1500 *
% 1000 ¥ ! \

Thus, the elevation of a verifying obs is often £ coo £ | I

different from the elevation in the NWP model. T ok LRSS ISP PSPPI IS AP N Bt I S, ot

-130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80
Thus, the model is not representative of the Longitude (°)
observation. » West-East terrain cross section through Whistler (50.12°N)




British Columbia Terrain Elevation

Van- | 8| Coast Range Interior | Colum.  Rocky
couver (4| Mountains Plateau | Mtns.  Mtns.
Island |
S| Whistler Kelowna Rocky Mtn.
3 Trench
3000 £
E 2500 % _
- I ,
i>-’ 2000 : l l
W 1500 % p
C I
& 1000 £+ i A ]
2 500 i; -
0+ ——t

-128 -126 -124 -122 -120 -118 -116 -114
Longitude (°)

« West-East terrain cross section through Whistler (50.12°N)
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Zooming in Near Whistler

Squamish River

Jervis Inlet Callaghan Lillooet
(fiord) Whistler Lake
Vill
2500 ¢ : e A
E 2000 % 1 AL NMWAd
APV
‘© WUy \ VoY \v
e 1
RS VA L
-124 -123.5 -123 -122.5 -122

Longitude (°)

« West-East terrain cross section through Whistler (50.12°N)
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Terrain Elevation vs. Grid Size.
Terrain must be smoothed to match grid resolution.

Example: If grid size is Ax =21 km
Then smoothed terrain is shown in green.

Whistler Village elevation
2500 7
2000 + ' l

1500 § ]

1000 #Hf [

>00 WAL VAU actuat

0 +——— } ——+— —t—— S

-124 -123.5 -123 -122.5 -122
Longitude (°)

Q.
gAA M
U v
&

Terrain Elev. (m)

« West-East terrain cross section through Whistler (50.12°N), where 0.1°lon = 7 km.
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How Fine is Fine Enough?

Many valleys are narrower than 1 km
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An Obvious Trick: Use finer horizontal grid size

Example: If grid size is Ax =7 km =
Then the modeled terrain is closer to the actual terrain. Good.
And the modeled slopes become steeper (closer to real). Difficult.

2500 ¢ : o
E 2000 % } > A f'v\_fMWAd
- ] ©
1500 ] I A | AN

500 - |

0¥ U : ——— ac::tu:al: !H

-124 -123.5 -123 -122.5 -122
Longitude (°)

1000%5—M A WA
:fi“ |

Terrain Elev

« West-East terrain cross section through Whistler (50.12°N), where 0.1°lon = 7 km.
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Summary

* Continuous Variables [T, U, V, P, bounded (RH, Precip)...]

+ Categorical (Binary, yes/no) Events

* Probabilistic & Ensemble Forecasts

* Terrain Issues

Roland Stull, UBC
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