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I n tr d t. t gnd points,8 avoidance of aliasing requires the use of BGM +1) evaluation points
O u C IO n O in longitude. Hence a model with 42 modes will use typically an underlying

Jongitude-latitude grid of 128 x 64 points for the evaluation of the nonlin-

G e 0 p hys i C al F I u i d ear terms (note the rounding toward powers of 2 to take advantage of efficient

FFTs). This grid is called the Gaussian grid or transform grid. The calculation of
grid spacing based on the number of Gaussian grid points overestimates actual

L ]
Dyn am I CS resolution because it is designed to avoid aliasing on nonlinear interactions,

and the actual, lower resolution is that which corresponds to the wavenumbers

PhYSiCaI and Numerical Aspectg associated with the spectral decomposition.
The transform methods thus allows us to calculate some terms in spectral
Second Edition space (linear terms) and others (quadratic advection terms and nonlinear terms

stemming from various parameterizations) in the transformed space so as to
use the most appropriate technique for each term. In practice, it means that the
model utilizes both spectral and grid representations of each variable.

The high convergence rate of spectral methods is inherited with the spherical -
harmonics, as long as the physical solution is sufficiently smooth. When fronts
or jumps are present in the solution, however, spatial oscillations emerge near
the place of rapid variation. This is known as Gibb’s phenomena. The associated
over- or undershooting on the physical grid can lead to spurious physical results.

J ean-Marie Beckers An overshooting of" specific humidity, for example, may lead to the poetically
named spectral rain.
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Géophysique et Océanographie Because of the calculation of some terms on the physical grid, the geometri-

Université de Liége cal convergence of meridians toward the poles may also be a problem. For the
B-4000 Lidge advection part, this can be overcome by the semi-Lagrangian approach, which
Belgium we describe next.

19.8 SEMI-LAGRANGIAN METHODS

To deal with advection, we again turn our attention to the passive-tracer con-
centration ¢, which is conserved along a trajectory of a parcel of flud as long
as diffusion remains negligible. The Lagrangian approach ensures exact con-
servation of the tracer value at the price of calculating its trajectory in time
(see Section 12.8). As we have seen, however, the pure Lagrangian method
leads sooner or later to an impractical distribution of particles, and it becomes
impossible to determine concentration values in regions nearly void of parti-
cles. This is what happens when we follow the same set of particles over time:
some of which flow out of the system or are caught in stagnation points. Semi-
Lagrangian methods avoid this problem by using a different set of particles
at each time step. The set is chosen at " so that at "+ the chosen particles
arrive at the nodes of the numerical grid. This amounts to integrating trajectories
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Particle in ¢*+!

FIGURE 19.11 In a semi-Lagrangian
method, trajectories are integrated back-
ward in order to find an earlier location of
the fluid particle that reaches grid node (i, j)
by time r"*!_ Once this location is knov;x,;,
the value of the variable of interest, such
as a .temperature or concentration, at that
location can be obtained by interpolation
f’f txt:earby values. The interpolated value
is i

Particle in ¢" 1ocafigrfr(2? %l?tegrﬁz ;1?:“0“ o fene

backward for one time step in order to find where th igi

past lo?atxons a.re determined, at £7, the concentration inegl::eglglca:i‘m(l)snizethme
determm.ed by interpolation among known values on the grid (Fig. 19.11) -
. For su.npliﬁcation, let us consider first the one-dimensional cz;se v‘vith. i

tlv'e velocity  and uniformly spaced grid (Fig. 19.12). The particle that la 131051-

grid node x; by time ¢+ was at the earlier time " ="+ — Ar at positionn e

x=x;—UAL. (19.29)

g,?e?‘, t;rlxif:t;m gt;id with spt)lacing Ax, this position x most likely lies within a grid
rather than, per 1 i is grid i is gi
by per chance, at an other grid point. This grid interval is given

X1 p Sx=Xx;—ulr <x;p, with p=integer part of u—i—;. (19.30)

By virtue of advection without diffusion, the value of &' is none other than

& at x, a value which ; -
- ’ we can obtain by interpolation. Performi i
interpolation, we obtain rpolation. Performing a linear

antl _ Gip—%) -p (x—xi-1-p) . = =
; Gt T & ,=Ce 1, +(1 =07, (1931)

FIGURE 19.12 The semi-La; i i i
SURE 19. grangian method in one dimension. The particle in light
during time interval [#*, f*+1] over a distance uAt to reach grid node lageléd iat tin%: t"g'!::y e
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for which we define

- ult
& (Z}E *p) (19.32)

The scheme is monotonic and thus of first order. We can easily see that, as long
as uAt < Ax (and thus p=0), the scheme is equivalent to the upwind scheme.
However, contrary (o the upwind scheme, no stability condition is necessary
nere because the method uses the correct grid interval from which to interpolate.
Numerical diffusion persists, however, although it is reduced in the sense that
Jarge time steps can be used and the total number of time steps can be decreased.
For a given simulation time, fewer time steps mean less numerical diffusion.

To decrease the amount of diffusion introduced by the interpolation, a better
than linear interpolation can be used. A second-order, parabolic interpolation
yields a scheme equivalent to the Lax—Wendroff method.’

In two dimensions, the approach is readily generalized with backward tra-
jectories for a single time step followed by 2D spatial interpolation (either
bilinear or biparabolic). The trajectory calculation needs to take into account
that the flow field (u, v), and this may become quite complicated if UAt=> Ax.
If the velocity field varies over the trajectory on a scale comparable to the grid
scale Ax, intermediate time steps are necessary for the calculation of the back-
ward trajectory in order to maintain accuracy, and the calculation cost increases
rapidly.

However, if the velocity is relatively smooth on the scale of the numer-
ical grid (which ought t0 be the case and will necessarily be the case near
the pole), that is, Ax « L, simple trajectory integrations will suffice. In fact,
if Ax UAt <KL the semi-Lagrangian approach is much more efficient than
the Fulerian method because during each time step, a large number of grid

points can be “jumped over” by advection. Hence, interpolation (and associated
diffusion) is less frequent, and the spatial scale of the trajectories is correctly

captured. This is the way to reap the maximum benefit for the Semi-Lagrangian
approach.

If Ax~ L, time steps are similar to the Eulerian approach. The major advan-
tage in this case 1s the stability of the method 1n the face of the occasionally
excessive time step. For higher accuracy, however, one should not use longer
time steps than allowed by UAr~ L. If there are many different tracers to be
advected simultaneously, as in air pollution studies or ecosystem modeling, the
method presents considerable advantages because a single, common trajectory
needs to be calculated for all tracers.

For the nonadvective terms, such as source/sink and diffusion terms,
a fractional-step approach is possible, for example, by first using a semi-

9Note the difference: In Eulerian methods, we spoke about interpolating for flux calculations to be
discretized subsequently; here we speak about interpolation of the solution itself.
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Lagrangian advection scheme followed by a Eulerian diffusion scheme either
on the physical grid or in spectral space. Alternatively, the evolution of source
terms may be taken into account along the trajectory (e.g., McDonald, 1986).
Contrary to the finite-volume approach of Eulerian methods, global conservatio
properties are more difficult to handle but can be respected (e.g., Yabe, Xiao &
Utsumi, 2001).

ANALYTICAL PROBLEMS

19.1. Consider the regular gardening greenhouse and idealize the system as fol-
lows: The air plays no role, the ground absorbs all radiation and reradiates
it as a black body, and the glass is perfectly transparent to short-wave (vis-
ible) radiation but totally opaque to long-wave (heat) radiation. Further,
the glass emits its radiation inward and outward in equal parts. Compare
the ground temperature inside the greenhouse with that outside. Then,

redo the exercise for a greenhouse with two layers of glass separated by a
layer of air.

19.2. Consider the long-wave radiation fluxes of Figs. 19.2 and 19.3. In each
case, the upward flux from the ground (E5) is greater than the downward
flux from the atmosphere (0.64 E;). Can you explain why?

19.3. Consider the crudest heat budget for the earth (without atmosphere and
hydrological cycle) and assume the following dependency of the albedo
on temperature: At low temperatures, much ice and clouds cover the earth,
yielding a high albedo, whereas at high temperatures, the absence of ice
and clouds reduce the albedo to zero. Taking the functional dependence as

a=05 for T<250K
270-T
o=
40
a=0 for 270K<T, (19.33)

for 250K <T<270K

solve for the earth’s average temperature 7. Discuss the several solutions.

19.4. Using the global heat budget of the earth model, complete with an
atmospheric layer and hydrological cycle, explore a worst-case scenario,
whereby elevated concentrations of greenhouse gases completely block
the transmission of long-wave radiation from the earth’s surface, the
intensity of the hydrological cycle is unchanged, and the anticipated
global warming has caused the complete melting of all ice sheets, effec-
tively eliminating all reflection by the earth’s surface of short-wave solar
radiation. What would then be the globally averaged temperature of the
earth’s surface? (Except for those transmission and reflection coefficients
that need to be revised, use the parameter values quoted in the text.)

9 Atmospheric General Circulation ( )

{haphw@

NUMERICAL EXERCISES
19.1. What is the spatial resolution (in kilometers) along the eguator for'a TZS.Sl
a spectral model? How many grid points must the underlying Gaussian gri
have in order to avoid aliasing in the advection terms?

19.2. Use spherical.m to consider other basis functions Y . than those of

Fig. 19.9. |
19.3. Estimate the numerical cost of the forward and inverse transform associ-

ated with spectral harmonics.
19.4. In addition to the problem of decreasing grid si)aci;lg nea; tlkslet é);le(:is(;

- i i i the poles for mode
hich other problem can you 1dent}f?l at the _

:\Votl work with a spectral decomposition? (Hint: Think ab(?ut boundary

conditions for an AGCM, for longitude first and then for latitude.)
polynomials, given for example in
d the spectral coefficients of spa-
coefficients of the function to be

19.5. Exploiting properties of Legendre
Abramowitz and Stegun (1972), fin
tial derivatives, knowing the spectral
differentiated.
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An IntrOdUCtlon to 1) Traditional semi-Lagrangian schemes
i i P i + traject tati
Semi-Lagrangian Semi Implicit sl
Dynamical Solvers

2) Conservative semi-Lagrangian schemes
+ mass conservation

May Wong 3) Shallow-water solver

» semi-Lagrangian advection

« implicit method for faster waves
+ Helmholtz equation

Dept. of Earth, Ocean, and Atmospheric Sciences,
University of British Columbia, Vancouver BC

ATSC 595 NWP Seminar «+ conservative tracer transport
March 14, 2013 4) Nonhydrostatic solver
+ fully-compressible non-hydrostatic system
) 5) Summary
Backgound ’ s Background
NWP solver Traditional semi-Lagrangian semi-implicit solvers
(Parameterization schemes) (Dynamical solver}
- microphysics ) - equations of motion + NWP application was pioneered by André Robertin the
- cumulus convection - continuity equation early 1980s (Robert 1981; Robert et al. 1985)
- planetary boundary layer - thermodynamic energy equation
- etc. - tracer equations +
Design choices: advection acoustic waves

1. Grid point or spectral

2. Grid type (Cartesian, lat-lon, icosahedral, etc.) . A more lenient numerical stability condition allows for

3. Discretization method (FV, spectral elements) larger time steps to be used as compared to Eulerian

4. Arrangement of variables (horizontal, vertical, temporal) schemes, making it more computationally efficient.

5. Order of accuracy « Review paper: Staniforth and Coté (1991)

6. Conservation properties

7. Shape-preservation, monotonicity
Backaprwd : = Beckgouwmd
CONC s ooos

+ Most widely used scheme in current global NWP models,

e.g.

CCECMWF

[ [ Ervronment - IFS (ECMWF)

=Z=Met Office - GEM (EC)
METEO - UM (UKMO)

FRANCE

- IFS/ARPEGE (Météo-France)
- SLAV (Hydrometcentre of Russia)

- GRAPES (CMA)
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Trae! SL31 schemes
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What does “semi”-Lagrangian mean?

In a fully-Lagrangian model, we
would be following every parcel
throughout the simulation.

Trad SLE scheres
QBIOCCO

What does “semi’-Lagrangian mean?

T+ 2%dt

In a fully-Lagrangian model, we
would be following every parcel
throughout the simulation.

Tiad SLS1 schistes.
BOTO0C0T

Example: 1D advection equation

Continuous form:

aQ _ 9 9
d—?=WQ+U(x,t)a—§=O

Eulerian finite-difference

Qi(t+ At) — Qi(t — At) Qi1 (t) — Qima(t) _
AL + U =0

Traditional semi-Lagrangian

Qe+ AH - Qp(t=A1) _
2At

Trat SLSTschemes
08COTO00

What does “semi’-Lagrangian mean?

In a fully-Lagrangian model, we
would be following every parcel
throughout the simulation.

Tradd SLE schemes
0eCTO00a

What does “semi’-Lagrangian mean?

T+ 2*dt

But parts of the domain will be
under-resolved if the parcels
end up in clusters.




Trad SL31 schemes
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As a remedy, instead of
strictly tracking each
parcel time step after
time step, we only follow
each parcel over one
time step, after which,
the parcels are reset

back to the Eulerian grid.

Thus, the term
“semi’-Lagrangian.

As a remedy, instead of
strictly tracking each
parcel time step after
time step, we only follow
each parcel over one
time step, after which,
the parcels are reset

back to the Eulerian grid.

Thus, the term
“semi”’-Lagrangian.

As a remedy, instead of
strictly tracking each
parcel time step after
time step, we only follow
each parcel over one
time step, after which,
the parcels are reset

back to the Eulerian grid.

Thus, the term
“semi’-Lagrangian.

As a remedy, instead of y
strictly tracking each

parcel time step after

time step, we only follow

each parcel over one

time step, after which,

the parcels are reset

back to the Eulerian grid.

Thus, the term

“semi”’-Lagrangian.

0OS00O0Q

As a remedy, instead of
strictly tracking each
parcel time step after
time step, we only follow
each parcel over one
time step, after which,
the parcels are reset
back to the Eulerian grid.
Thus, the term
“semi”-Lagrangian.

T+ 27dt

Trad SLSFschens
000W0000

Instead of computing
forward trajectories, we
can also compute
backward trajectories
and reset the parcels at
the arrival time-level back
onto the Eulerian grid.
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Instead of computing
forward trajectories, we
can also compute
backward trajectories
and reset the parcels at
the arrival time-level back
onto the Eulerian grid.

Tt SL31 echames
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Semi-Lagrangian schemes use a regular grid (like the Eulerian
scheme), but has the numerical stability of a Lagrangian
scheme.

ymputatic fthe partur

Trajectory computation
am = At-U(Zy — am, t)
lterate to get U(zm — aun, t) (cOnverges typically at 3 iterations)

Grid-point interpolation

—_

AL

t

Thast 5L schete
COBOBGOD

Recall that the Courant-Friedrichs-Lewy (CFL) condition
“requires that the numerical domain of dependence ofa
finite-difference scheme include the domain of dependence of
the associated partial differential equation.”

(Durran, 2010)
Courant-Friedrichs-Lewy (CFL) stability condition:

oo YNWIAL
Az~

where At is the time step, A is the grid spacing, and |v] is the
maximum advection speed.

Semi-Lagrangian schemes use a regular grid (like the Eulerian
scheme), but has the numerical stability of a Lagrangian
scheme.

These schemes consist of two main steps:
1) computation of the backward trajectories
2) computation of the value at the departure time-level

Limitations of traditional semi-Lagrangian methods
grid-point interpolation introduces damping
requires a posteriori mass fixers to conserve mass

This pitfall has led to the development of
inherently-conservative semi-Lagrangian schemes, e.g.
flux-form versions (Laprise and Plante, 1995; Lin and Rood,
1996; Harris et al. 2011), and cell-integrated versions (Ranci¢,
1992: Nair and Machenhauer, 2002; Zerroukat et al., 2002;
Lauritzen et al. 2010).
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ISL schem CSLAM

conserving mass using a uiol

Cell-integrated semi-Lagrangian (CISL) schemes are inherently
mass-conserving.

We utilize the Conservative Semi-LAgrangian Multi-tracer
(CSLAM) transport scheme (Lauritzen et al., 2010).

AA §/ AA

— aA”

ISk schemss
0¥
CISL scheme — CS

onserving mass using a Cl

Continuous %p;qi +V - (pgjv) =0

CSLAM ﬁq?;;lAA — P77 A| where 757 = s [ pay" (2,)d4

l |

AA AA

CIRL sotvar: shaliowwoter

S000CC0000000

I in rat | ecamil ranmMian « I i~rit enl P
cell-integrated semi-Lagrangian semi-implicit solver

ou du du _ dh
ot Yoz "ay oz

dv 6v+ v %_0
o oz " Vay| Yoy —

A rell
A cel

Continuous

SISl sthatnes
oee

,0NsServing mass using

LAM

op
ot

+V:(pv) =0

CSLAM|[7zHAA = 716A| where 72 = 2 [f p"(x,y)dA
SA

AA

AA

5"

II-integr

2\ ¢

dilcl

d semi-|

SHSL sofver: hallwnats
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rangian semi-impicit sSoOvel

ag

Governing equations for a shallow-water system:

ou du
B

v o

=t Ve

du oh

+U5§—g'5;:
+v@— i'])E—O
ay Yoy

dh

9(hg)

L 4V (hgv)=0

ot

ntegrated semi-|

DI solver shalfovw-Vaner
2000000000000

agrangian semi-implicit solver

du _ QE—O
dt 99z~

o] oh _
dt dy



du | Oh|_ (implicit)
@ |%8z7°
dv Oh| (implicit)
@ "%y |7°

CISL solvex o
CRGOOLOID

3h+v (hv)=0

Semi-implicit CISL continuity equation (Lauritzen et al., 2006):

At -

(coupled to the momentum equations)

L sakvar: denater
COORODO00000G

Helmholtz equation:
R 4 ASyoh%H + Boy, kg = RHS.

where the only unknown is h}“ and the equation is solved
iteratively, e.g. using a conjugate gradient method.

Then, compute un+!, v+ using k% solutions.

SRS
Cell-1Nntegre

)

du  Oh

@ 99z
dv  Oh _
dt oy

Forward-in-time:

—uD+At(——)[ go.h]" +At(1+ﬂ)[—g6zh]:+l

—vDJrAt(l ’3)[ obh]” +At(1+ﬂ)[——g6yh]:;+l

where £ is a time-off-centering parameter.

ell-integrated semi-Lagrangian semi-implicit solvet

Forward-in-time:

u2+1:u'5+Ai(1—;—/3)[—gJIh] +At(1+ﬂ [ gﬁzh]"“

A

3 < () ] (52 o]

Semi-implicit CISL continuity equation (Lauritzen etal., 20086):

hﬁ“ = hgg At Ho [-Veul Ly Ving? {,n+1:|

(coupled to the momentum equations)

SIS0 sobver: shalldw-watst
6000806000005

hm for a SLSI solver using |
|. Form discretized semi-implicit system
2. Use CISL scheme (e.g. CSLAM) to get A%}
;. Solve the linear Helmholtz equation for h7+!

Solve for u, v using k7! solutions
Compute prognostic variable kg™t & diagnostic variable

qn+1
Brampie: 3+ = [ - o/ an] 3 4 R
,,:+1,_[ o' h] L 4 RD,
NEH = 1ot — S o [Vow v — Ving -]

Helmhotz equation: A3t + As.oh7yH! + By, AT = RHS.

Prognostic: hg3 ! = hg;';;‘
Disgnostic: "1 = hg T ant!



onservative tracer ti nsport
Desirable to maintain consistency between the discrete

equations of:
(example: SW system)

a—’Z+V~(hv):0 (1)

2(hq) _
T2 19 (hav) =0 @

Numerical consistency
When ¢ = 1, discrete scheme for (2) should reduce to that for
(1). The lack of numerical consistency between the continuity
equation and the scalar conservation equation can lead to the
unphysical generation or removal of model constituent mass.
— “consistent tracer transport’ or “free-stream preserving”

of consistency Iin a semi-iImplICIt SySteir

T
t CIS

Discrete semi i\r\lrﬂ'\ "«'w!u!;!”i‘.‘»’;.tl'!“riiwvr writzen

et al. 2006) [LKM]

+1 +1 S
ﬁn = -ﬁn o —Ho[ eul * VrHrl = VIag " v"+1]

At SA*
+7H0|:veul'v — Viag* v ]KZ
where [] refers to the cell-averaged value.

Consistent scalatr insport us ing LKM

0A*
AA

— BHQ[Vou v+ = Ving- 1],

i aenii . At
R =gy + S HQo[Vou v = Viag - v7]

CISL sohiar: shedo
DACOICOOOPOOG

The scheme is designed to:
|. maintain conservation and consistency
2. require a single solve of a linear Helmholtz equation
require a single call to CSLAM

Discrete semi-implicit CSLAM-SW continuity

e At [Ve\u Bty Vg hg:rpl‘;nﬂ]

—n+1
h o T g

SA*

+ 'Tt [veul v — Vlag hm Vn] AA

\ consistent constituent mass conservation \ation

+1 At 1o
h—qn F—n [veul hqn+1 ntl Visg - hq:,"c;, vn-\-l]

2
t n AT
+ T—[Veul : hq ¥V = vlag 4 hll v ]H

(Wong et &l. 2013, MWR)

ICK OF consistency in a semi-impiicit SYSLEITI

)iscrets mi-implicit CISI

tal. 2006) [LKM]

ot E Ho [veul v Yy {-,n+1]

exp
At JA*
fiminiy Lyt — .y
+ o5 Ho[Veu v = Vg vz
where ] refers to the cell-averaged value.
T
E vy solve for hq using CSLAM
—n+1 —n+1
hqg " = hgexp
Consistency test with an initially constant ¢y
Results from LKM
Deviation g — qo at the simulation end time.
() Inear casa () nonlinear case
400 400y
300] 300]
> 200} > 200
100| 100}
100 200 300 400 100 200 300 400
X X
[ | —— ]
-1 ] 1 e -1 0 1y
-9 x10 Py x10
oL s vl EEN
‘DOOGHOQOQQQG
Consistency test with an | lly con

Error is defined as the deviation ¢ — go at the simulation end time.

(a) Linnar ncnumuhon (h) Nonllnem penurbation

10" . 10° : 1
|| =~ Max Abs Enor |

10" } — Mean Abs Euon
‘ —8-AMSE

h-&Mu Abs Error | 1
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1apyc reservation in UVCoLAlV
Using the Gaussian jet flow, we test the shape-preservation
property of CSLAM-SW and LKM.
Non-shape-preserving
Initial ¢ CSLAM-SW ¢

) 05 ) 05 1
X x10°

01 1
Specific concentration, g

CILL sobver: ne
SOCOOCOCO0

Shallow-water systems work well as initial testbeds as a
simplified system with only horizontal motion.

Extension to a 2D vertical-slice (z-z) fully-compressible
nonhydrostatic model.

- o ] e - S B o

2 o
At ™ n Aty _7 n+1/2
nt+l _ =y ’ 2 s — ~/
YA = [w 2 pm 'deé,,G]d + Y [gpf 9pm ]d/Q
+ AR - ST RysL 0t
2 rn

At ; At sA*
orft =8, - - [Vsul N Charig +1)] +5 Veul - (O5,V"™) A

+ At(Fe,. )z

At At JA*
o = it — o [Veu by )] + 5 [Veu - (v T

Jexp T

At At GA*
Q= Qb = [Vam . (Q?’:xlpvm+1)] +5 [Veul . (Q;vm)] 5

(Wong et ., 2013, in prep.) +P

il poivey

Specific concentration, ¢
(pink and purple indicate unphysical values)

CSLAM-SW (No SP) CSLAM-SW (SP) LKM (SP)

g

Spedific concentration, @ Spedific concentration, q Speafic concentration, q
Shape-preservation is violated in LKM due to inconsistent
transport.

5L solver. nonly dirostatic
GeTU000000

overning equations: tuiy-co

du w a0,

i —'F;’YRd_h + F,

dvw ™ 80, Atp_ w ,

T e T j’:[yl’d;’? = gpm] + Fo

[2ISI

—0t—+V~(6mv) = Fe
opu
9t

iy v @v)=Fe,

+ V- (pav) =0

‘Where 7 = (p/pg)™ is the Exner function, = = Ry /Cp. vy = ¢p/ce = 1.4, Ra = 287Jkg—t K1,
2, = 1003Jkg™! K—1,and g = 9.81m s—2. The fhix varisbles are given as

O =pabm and  Q; = pads,

where g; are the mixing ratios of moist species, such as water vapour, cloud water, rain water, étc.

Helmholtz equation:

()l Oatdag o Ot )
10, = Ro = S [5u(O5 A Ru) + 8,001 Ru)

R., Ru, and Re represent the known terms in the z- and
z-momentum egns and the theta equation.

Compute v+ and w™t! using @1,

Use prescribed winds to solve for o7 and Q7.

MIDIe MOIST Eulel



CI5L soher fentidmstatic
DOO0BCHOO0

Density current test case

Potntd wnaperewrs prirbaton ()

Cr=0.3

T =15 mins
X;, =51.2km
Zp =6.4 km

The base state is hydrostatic with a
surface temperature of 300 K.
Temperature perturbation:

AT = —15°C
z, = 4.0 km
zy = 2.0 km

Constant fixed physical viscosity
v=T5m?s!

C15L sabver nenhydostatis
DOOOCHONO

Density current: large time steps (Az = 100 m)

Potertial temperalurs perturbation (K)

horizontal dstaé (km)

CISL eolyat: fontyiostatic
0000000080

Squall line test case

At=1s
(Cr = 0.3)
At=3s
(Cr=0.9)
At=4s
(Cl’ = 12)
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Squall line test case
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In this presentation, we have looked at:

Traditional semi-Lagrangian transport schemes
trajectory computation
grid-point interpolation

Conservative semi-Lagrangian transport schemes
coll-integrated version, CSLAM

Conservative semi-Lagrangian semi-implicit solvers
semi-Lagrangian discretization for advection
implicit method to resolve fast-propagating waves
Helmholtz equation
conservative tracer transport; numerical consistency
example solvers:
1) shallow-water 2) fully-compressible nonhydrostatic
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Springer, 2nd edition, 516 pp.

[@ Haris, L.M., PH. Lauritzen, and R. Mittal (2011)
A flux-form version of the conservative semi-Lagrangian multi-tracer
transport scheme (GSLAM) on the cubed sphere grid. J. Comp. Phys.,
230, 1216-1237.

Laprise, J.P.R. and Plante, A (1995)

A class of semi-Lagrangian integrated-mass (SLM) numerical fransport
algorithms. Mon. Wea. Rev., 123, 5563-565.

E‘”‘“ [ ] ! nd B. Machen ’ )6)

A Mass-Conservative Semi-Implicit Semi-Lagrangian Limited-Area
Shallow-Water Model on the Sphere. M.W.R., 134(4), 1205-1221.

D taniforth nd Coté, J (1991)

Semi-Lagrangian integration schemes for atmospheric models — a
review. Mon. Wea. Rev, 119, 2206-2223.

A cell-integrated semi-implicit semi-Lagrangian shallow-water model
(CSLAM-SW) with conservative and consistent transport. M.W.R., in
press.

B

SLICE: A semi-Lagrangian inherently conserving and efficient scheme
for transport problems. Q. J. R. Meteorol. Soc., 128, 2801-2820.

uritzen, and R.E stull (2013)

The End

Suminary

coass

[@ Lauritzen, PH., R.D. Nair, and PA. Ullrich (2010)

A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM)
on the cubed-sphere grid. J. Comp. Phys., 229, 1401-1424.

[@ Lin, SJ. and R.B. Rood (1996)

Multidimensional flux-form semi-Lagrangian transport schemes. Mon.
Wea. Rev., 124, 2046-2070.

a Nair, R.D. and Machenhau 0(

The mass-conservative cell-integrated semi-Lagrangian advection
scheme on the sphere. Mon. Wea. Rev., 130, 649-667.

[@ Robert, A. (1981)
A stable numerical integration scheme for the primitive meteorological
equations. Atmos.-Ocean, 19, 35-46.

[A Robert, A, T. Yee, and H. Ritchie (1985)

A semi-Lagrangian and semi-implicit numerical integration scheme for
multilevel atmospheric models. Mon. Wea. Rev., 113, 388-394.



