
We can measure 
this with GPS and 
other methods -

example:
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horizontal strain in the  Ventura 
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Congratulations! You have just come up with 
the “displacement gradient tensor”.
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Today:
   • normal strain
   • shear strain
   • rotation
   • how to get the strain matrix from the matrix above
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Normal strain: elongation or contraction
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• positive for lengthening
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Normal strain: elongation or contraction
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Normal strain: elongation or contraction
A 2D view.

lives in row 2, column 2 of the displacement 
gradient matrix and the strain matrix
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ε11 lives in row 1, column 1 of the displacement 
gradient matrix and the strain matrix
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The other possibility: displacement 
component is perpendicular to ∆x
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Shear strain is defined as:
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This is “simple shear” strain



is in row 2, column 1 of the strain matrix
is in row 1, column 2 of the strain matrixε12
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ε21 ε12and          are the same exact number.
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these are NOT 
shear strain

displacement gradients  matrix strain  matrix

Answer: Some rotation is hidden in those 
displacement derivatives.

Class activity: find out what rotation is 
and define it in terms of         and        .∆u1

∆x2

∆u2

∆x1

Why not just             

∆u1

∆x2

∆u2

∆x1

ε12 = ε21 = ?



Trace axes and points onto the transparency.

Rotate the transparency (not by a large amount).

1) For the point on the x1 axis: what is du2 ? What is 

dx1? (dx2 and du1 should be small enough to ignore.)

2) For the point on the x2 axis: what is du1?  What is 

dx2? (careful with signs)

Remember the definition of tangent of    and that 

for a small angle,     in radians = tan(   )
θ

θ θ

θ3a) What is the angle of rotation (   ) of the x1 axis?  Of 

the x2 axis?

3b) We want to define counter-clockwise rotation as 

positive, then what are the answers to 3a?

3c) Write out the mean of the two angles in 3b (in 

terms of du!s and dx!s).

Group activity - This will be part 1 of 
your Homework 3 (hold onto it)

Usually we have to deal with strain that looks like this:

You have just found the mean rotation angle, “w”.

The x1 - parallel and x2 - parallel sides have been 

rotated by different amounts.  You can!t make this 

happen with a rigid transparency because rotation and 

strain have both occurred.

5a) Compute: du1/dx2 and du2/dx1

5b) Compute the rotation w.

5c) Compute the shear strain        .

4) In terms of du!s and dx!s, what is (shear strain + w)?

What is (shear strain - w)?

ε12

6) Show me that for “simple shear” 

strain,         = w (or -w). ε12
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