We can measure

this with GPS and

other methods -
example:
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Today:
* normal strain
* shear strain
* rotation
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Congratulations! You have just come up with
the “displacement gradient tensor”.

* how to get the strain matrix from the matrix above




Normal strain: elongation or contraction
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Normal strain: elongation or contraction
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* positive for lengthening
* negative for shortening
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Normal strain: elongation or contraction
A 2D view.
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€11 livesinrow 1, column 1 of the displacement
gradient matrix and the strain matrix

€922 lives in row 2, column 2 of the displacement
gradient matrix and the strain matrix



The other possibility: displacement
component is perpendicular to Az
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This is “simple shear” strain
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Shear strain is defined as:
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these are NOT
shear strain

€12 isinrow 1, column 2 of the strain matrix
€21 isinrow 2, column 1 of the strain matrix

€21 and €192 are the same exact number.
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Answer: Some rotation is hidden in those
displacement derivatives.

Class activity: find out what rotation is

and define it in terms of 2U1 and AUz |
AZCQ A:Bl



Group activity - This will be part 1 of
your Homework 3 (hold onto it)

Trace axes and points onto the transparency.

Rotate the transparency (not by a large amount).

1) For the point on the x1 axis: what is duz ? What is
dx1? (dx2 and dus should be small enough to ignore.)

2) For the point on the x2 axis: what is du1? What is
dx2? (careful with signs)

Remember the definition of tangent of § and that
for a small angle, 6 in radians = tan(6)

3a) What is the angle of rotation (§) of the x4 axis? Of
the x2 axis?

3b) We want to define counter-clockwise rotation as
positive, then what are the answers to 3a?

3c) Write out the mean of the two angles in 3b (in
terms of du’s and dx’s).

You have just found the mean rotation angle, “w”.

4) In terms of du’s and dx’s, what is (shear strain + w)?
What is (shear strain - w)?

Usually we have to deal with strain that looks like this:
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The x1 - parallel and x2 - parallel sides have been
rotated by different amounts. You can’t make this
happen with a rigid transparency because rotation and
strain have both occurred.

5a) Compute: dui/dx2 and duz/dx4
5b) Compute the rotation w.
5c) Compute the shear strain €192.

6) Show me that for “simple shear”
strain, €12 = w (or -w).




