

Group activity - This will be part 1 of your Homework 3 (hold onto it)

Trace axes and points onto the transparency.

Rotate the transparency (not by a large amount).

1) For the point on the x_1 axis: what is du_2 ? What is dx_1 ? (dx_2 and du_1 should be small enough to ignore.)

2) For the point on the x_2 axis: what is du_1 ? What is dx_2 ? (careful with signs)

Remember the definition of tangent of θ and that for a small angle, θ in radians = tan(θ)

3a) What is the angle of rotation (θ) of the x₁ axis? Of the x₂ axis?

3b) We want to define counter-clockwise rotation as positive, then what are the answers to 3a?

3c) Write out the mean of the two angles in 3b (in terms of du's and dx's).

You have just found the mean rotation angle, "w".

4) In terms of du's and dx's, what is (shear strain + w)? What is (shear strain - w)?

Usually we have to deal with strain that looks like this:

The x_1 - parallel and x_2 - parallel sides have been rotated by different amounts. You can't make this happen with a rigid transparency because rotation and strain have both occurred.

5a) Compute: du_1/dx_2 and du_2/dx_1 5b) Compute the rotation w. 5c) Compute the shear strain ϵ_{12} .

6) Show me that for "simple shear" strain, $\epsilon_{12} = w$ (or -w).

