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Seismic Moment (Nm)
= 3

A range of slip values is possible for a given
rupture size - this controls AT
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for a M5 earthquake?
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Gutenberg-Richter Plots: Magnitude vs. how frequent
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b is about 1 for tectonic earthquakes, about 2 for volcano-related seismicity.

If data are for one year and b =1,

then a is the magnitude that happens on average once per year.
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Make the G-R plot for worldwide earthquakes

Average Worldwide Seismicity Totals for a Single Year
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Using Gutenberg-Richter seismicity statistics for forecasting
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we know the rate “r’ (how many earthquakes per year)
from the Gutenberg-Richter equation:

log N(M) =a - bM  but unfortunately this is the number
N(M) — 102—%M  of earthquakes >= M (not just = M)
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earthquakes increases by a factor of 10
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contributions to the summed moment from small
quakes, though there are more of them, get
smaller and smaller. So minimum M is not too
important.
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Fig. 4.13. Distribution of small earthquakes within the rupture zone of the 1964
Alaska earthquake, normalized to the recurrence time of that earthquake. The 1964
earthquake is indicated by an arrow. Notice that it is about 1% orders of magnitude
larger than the extrapolation of the small earthquakes would indicate. The rolloff at
M, <3 %10* dyne cm is caused by the loss of perceptibility of smaller events. (From
Davison and Scholz, 1985.)
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characteristic earthquake

in areas with characteristic earthquakes,
G-R seismicity statistics work for all but the
giant “characteristic earthquake”

6.0 65 70 75 8.0 83 this earthquake has a characteristic
Magnitude magnitude and occurs more frequently than
GR would suggest

example: Cascadia subduction zone
M9+ earthquakes

Integrating moment of earthquakes will
produce too little moment if you are not
aware of the characteristic earthquakes



Aftershocks

k p is approximately 1 (can vary)
(t) = c is about 0.05 (keeps the denominator above zero)
(t + C)p k is the number of aftershocks on day one
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k p is approximately 1 (can vary)
(t) = c is about 0.05 (keeps the denominator above zero)
(t + C)p k is the number of aftershocks on day one
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Number of aftershocks

Combining GR statistics with Omori’s Law gives

probability of aftershocks with particular
magnitudes after a big quake
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