
τ = µsσn

Byerleeʼs
Law

(1978)

rock type mostly 
unimportant

This works at T 
less than 

350-400° C

σn = σ1cos
2
α + σ2sin

2
α

τ = (σ1 + σ2)cos(α)sin(α)
fault plane

σ1
σ2

σn

τ

α

α     is the angle between 
the      direction and the 
pole to the fault plane

σ1

• component of the force vector acting 
on the fault plane.
• corrected area of the fault plane.

remember that          and         
are acting on the      and    
planes, NOT on the fault plane.

σ1 σ2

x1 x2

We have to account for:



First: compute traction = force per unit area for a 
particular plane of your choice (traction is a vector)

θ

α

1 m
2

F1

Same      as before but 
now applied to a much 

bigger area

F1

Principal (normal) 
stress      is   
acting in the     
direction on the 
(perpendicular)     
       plane.

1 m
2

F1

F1σ1

x1

σ1 =
F1

1 m2

so for oblique 
planes, the 

tractions can be 
small (0 if the 

plane is parallel to 
the force vector)

σ =
F1

(1 m2/ sin θ)

σ = σ1sin θ

σ = σ1cos α

Next, we have to resolve this traction vector into 
plane-parallel (shear) and a plane-normal vectors.

α

θ

σn = σ1cos
2
α + σ2sin

2
α

τ = (σ1 + σ2)cos(α)sin(α)

Traction

So if you are given 
principal stresses, these 

equations result:



Friction example (using tractions)

If A is the area of the bottom of this block

σn = N/A σshear = τ = F/A

Block pulled along the floor
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earthquakes!

τ = µd × σn

τ = µs × σn

shear stress drop
is much less than the 
background stress

∆τ

For many faults, earthquake shear stress drop is 
much smaller than “background” shear stress



τ = µd × σnτ = µs × σn1 2

Reid time-
predictable

slip-
predictable

Real earthquakes are none of the above.

= macroscopic contact area

Ar = asperity contact area

Close-up view of a fault



High-precision Lidar scan (topography) of an 
exposed fault surface

Asperities at a wide array of spatial scales

“smoother” profile in the slip direction

Voisin et al., 2007

Amonton’s First Law

Amonton’s Second Law

Frictional force is independent of the size of macroscopic 
areas in contact

Frictional force is proportional to normal force (“load”)

Amonton (2) also works for stress (force/area)

Again, Amonton (1) is referring to the macroscopic 
area (not the area of the actual asperities)



= macroscopic contact area

Ar = asperity contact area

Same asperity contact area Ar for both cases.
 If macroscopic contact area is small, normal stress = N/area is 

larger, asperities squash, and Ar is a larger % of macroscopic 
contact area



Asperity contact area increases with (macroscopic) normal stress
At the contacts, this affects shear and normal stress the same way

So ratio (mu) does not change with normal stress

Dieterich and Kilgore, 1994

•  Friction can increase with “hold” time. 
This happens through growth and 
increasing shear strength of contacts. 

• If sliding speeds up, the average lifespan 
of asperities decreases

• This means that friction drops with 
sliding speed

•      is the “state variable” in some 
friction laws: it can be interpreted as the 
average age of the asperities

θ



Asperity contact area also increases with hold time thanks to state variable (healing). This is 
increasing the frictional strength (mu times normal stress). Normal stress is constant in this 

experiment, so mu (that is, friction coefficient) is increasing with hold time.

Dieterich and Kilgore, 1994

Some ideas about static vs. dynamic friction

µs µd

hold slide

fr
ic

tio
n

τ ≥ µsσnslip occurs if

∆τ = (µs − µd)σn

fr
ic
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n µs

µd

Dc

slidehold

τ = µsσn



Rate- and state- dependent friction: 
what the friction data look like

initially, friction is 
higher 

(“direct effect”)

then it evolves 
and settles at a 

lower value

In this 
experiment they 
speed up slidingdirect 

effect new (lower) 
value of friction 

coefficient

Rate- and state- dependent friction

µ

distance of slip

µ = µo + aln(
V

V0

) + bln(
Voθ

Dc

)

(Dieterich 1981; Ruina 1983)

empirical 
equation



µ

distance of slip

µ = µo + aln(
V

V0

) + bln(
Voθ

Dc

)

If we assume that the value of the state variable (asperity contact age) is
(after a steady state, new sliding velocity is reached)

the “rate and state” friction equation is: µ = µo + (a − b)ln(
V

Vo

)

θ =

Dc

V

µ

distance of slip

slow fast

µ = µo + (a − b)ln(
V

Vo

)

“velocity-strengthening” friction

“velocity-weakening” friction

if positive then ____
if negative then _____



Effect of temperature on friction

(a - b) vs. temperature for granite 
(Scholz, 1998 and 2003)

Laboratory experiments show that stable frictional 
sliding is promoted at temperatures higher than 

about 300°C for most crustal rocks.

How (a-b) varies with depth

T < 300-350°C
 a-b<0

Sliding can be unstable

 a

T > 300-350°C
a-b>0

Sliding is stable

(Blanpied et al, 1991)

(a-b)

de
pt

h 
(k

m
)

has NOTHING to do with stability!
Only the change in     with sliding velocity matters.

µ
µ



velocity weakening 
friction: 
faster sliding --> 
weaker fault --> 
even faster sliding

velocity-strengthening 
friction: 
faster sliding --> 
stronger fault --> 
slows sliding


