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Fig. 2.9. Frictional strength for a wide variety of rocks plotted as a function of normal
load. The lettered data points refer to clay minerals as indicated in the key. (From
Byerlee, 1978.)

(¢ is the angle between
the o1direction and the
 pole to the fault plane

0, = 01 cos’a + Jgsin2oz

T = (01 + 02)cos(a)sin(a)

remember that 01 and 09
are acting on the x1and T2
planes, NOT on the fault plane.

We have to account for:

e component of the force vector acting
on the fault plane.

e corrected area of the fault plane.



First: compute traction = force per unit area for a
particular plane of your choice (traction is a vector)

o= 5 -
(1 m2/ sin 0)
for oblique
1 2 SO
m planes, the
Principal (normal) tractions can be
stress 01 is F} small (O if the
acting in the 1 plane is parallel to
direction on the the force vector)
(perpendicular)
plane.
Fy Same I as before but o=o15tm 0
o1 = ;
1 1 m2 now applied to a much O = 01C08

bigger area

Next, we have to resolve this traction vector into
plane-parallel (shear) and a plane-normal vectors.

shear stress and normal stress
Traction shear =0 Sln(a)
O =0cos(o)
normal
2

_ 2 ;
So if you are given Op = 01C08"Q + 028" QX

principal stresses, these )
equations result: T = (0'1 + O'Q)COS(CK)SZ’I?,(O()



Friction example (using tractions)

friction
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F=-p*V*g shear stress =
c = F/A = -p*g*1 normal stress =

. g . *
Sliding occurs if Gsheazr Gnormal V)
u = tan(o)

Block pulled along the floor

B oo
Joimon pteermst

If A is the area of the bottom of this block

Un:N/A Ushear:T:F/A




shear stress

friction

hold ' slide

For many faults, earthquake shear stress drop is
much smaller than “background” shear stress

_______ \\ [/ / shear sirass drop AT

earthquakes! is much less than the
background stress

A\ 4

time
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Fig.5.13. Simple
earthquake recurrence
models: (a) Reid’s
perfectly periodic
model; (b) time-
predictable model; ()
slip-predictable model.
The time-predictable
model is motivated by
the observation of the
Nankaido earthquakes.
(From Shimazaki and
Nakata, 1980.)

Real earthquakes are none of the above.

Close-up view of a fault
ASPERITIES

Ar = aspe

Fig.2.1. Schematic
diagram, in section and
plan view, of contacting
surface. The stippled
regions in plan view
represent the areas of
asperity contact, which
together comprise the
real contact area A.

A= macroscopic contact area

rity contact area



High-precision Lidar scan (topography) of an
exposed fault surface

Asperities at a wide array of spatial scales

“smoother” profile in the slip direction

Frictional force is independent of the size of macroscopic

areas in contact
Amonton’s First Law

Frictional force is proportional to normal force (“load”)
Amonton’s Second Law

Amonton (2) also works for stress (force/area)

Again, Amonton (1) is referring to the macroscopic
area (not the area of the actual asperities)



ASPERITIES Fig. 2.1. Schematic
diagram, in section and

plan view, of contacting

/ / surface. The stippled

%M regions in plan view
@) represent the areas of
asperity contact, which

together comprise the
real contact area A,

A= macroscopic contact area

Ar = asperity contact area

Amonton's First Law
friction force is insensitive to macroscopic area

because area of contacts (A') depends on normal stress

Same asperity contact area Ar for both cases.
If macroscopic contact area is small, normal stress = N/area is
larger, asperities squash, and Ar is a larger % of macroscopic
contact area



Dieterich and Kilgore, 1994

Applied Normal Stress
2.5 MPa

Il sowmPa

B 10.0MPa
Il 20.0MPa

Asperity contact area increases with (macroscopic) normal stress

At the contacts, this affects shear and normal stress the same way
So ratio (mu) does not change with normal stress

e Friction can increase with “hold” time.

This happens through
of contacts.

e |f sliding speeds up, the average lifespan
of asperities decreases

¢ This means that friction drops with
sliding speed

e (Jis the “state variable” in some
friction laws: it can be interpreted as the
average age of the asperities



Dieterich and Kilgore, 1994

Elapsed Time
1 second

Il 100 seconds
- 10,000 seconds

Asperity contact area also increases with hold time thanks to state variable (healing). This is
increasing the frictional strength (mu times normal stress). Normal stress is constant in this
experiment, so mu (that is, friction coefficient) is increasing with hold time.

Some ideas about static vs. dynamic friction
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Rate- and state- dependent friction:

what the friction data look like

Load Point Displacement (mm)

(d) - i
direct
0.55— effect

new (lower) r
value of friction
coefficient

u %
0.54— g
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Load Point Displacement (mm)

Rate- and state- dependent friction

displacement ——»

In this
experiment they
speed up sliding

initially, friction is
higher
(“direct effect”)

then it evolves
and settles at a
lower value

distance of slip

= o + aln(%) + bln(‘l/;f)

A\ 4

empirical
equation
(Dieterich 1981; Ruina 1983)
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displacement ——%»

\ 4

distance of slip

If we assume that the value of the state variable (asperity contact age) is § — VC

(after a steady state, new sliding velocity is reached)

““ ” H . . . V
the “rate and state” friction equation is: 11 = f1, + (@ — b)ln(v)
o

slow | fast

“velocity-strengthening” friction

“velocity-weakening” friction

distance of slip

b= 1o+ (a = b)in()

if positive then
if negative then



Effect of temperature on friction

(a-b)
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Laboratory experiments show that stable frictional
sliding is promoted at temperatures higher than
about 300°C for most crustal rocks.

How (a-b) varies with depth
(a-b)
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s l T <300-350°C
Qoo a-b<0
10r Sliding can be unstable

15+

20r

depth (km)

T > 300-350°C
a-b>0

& Sliding is stable

30F

35

(Blanpied et al, 1991)

4 has NOTHING to do with stability!
Only the change in [l with sliding velocity matters.



velocity-strengthening
friction:

faster sliding -->
stronger fault -->
slows sliding

velocity weakening
friction:

faster sliding -->
weaker fault -->
even faster sliding




