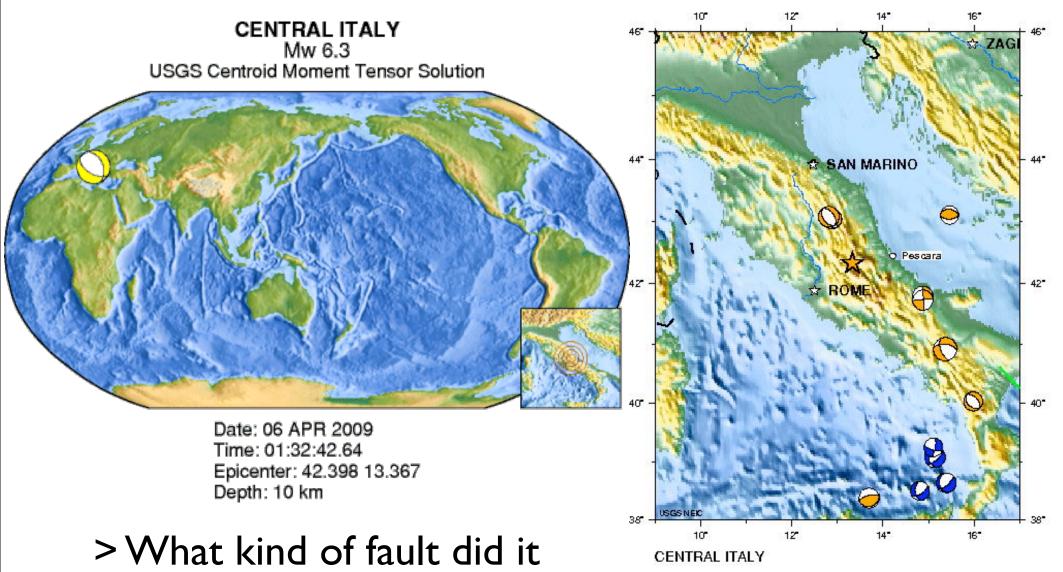
Magnitude 6.3 - Central Italy

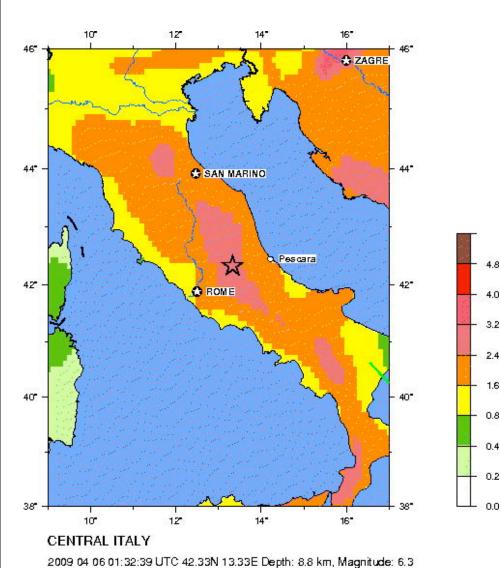
Wed Apr 8 19:00:01 UTC 2009 10 earthquakes on this map 10 20" 15 45 45 Bologr SARAJE ROME Bari Naple: 40" 4n alermo ΤU VALLETTA 35 35 10 20 15

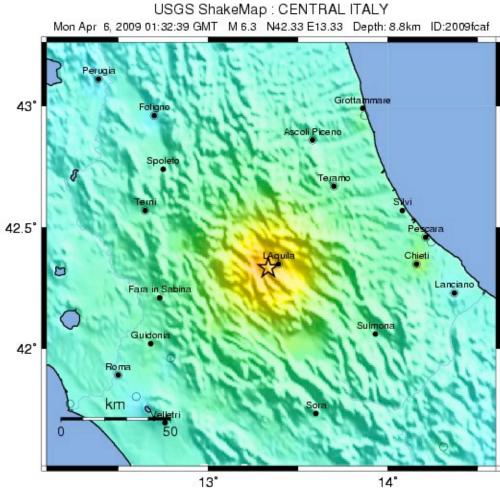

> at least 227 killed

> 1000 injured, 10000 bldgs destroyed or damaged

> occurred in central Appenines, a mountain range formed as a large accretionary wedge

 Mediterranean highly complex due to interactions of numerous microplates


FOCAL MECHANISM AND HISTORIC SEISMICITY


occur on?

2009 04 06 01:32:39 UTC 42.33N 13.33E Depth: 8.8 km, Magnitude: 6.3 Historic Moment Tensor Solutions EQ HAZARD MAP

SHAKE MAP (PGA)

Peak Ground Acceleration (m/s²) with 10% Probability of Exceedance in 50 Years

PERCEIVED Notfelt Weak Light Moderate Strong Very strong Severe Violent Extreme POTENTIAL Very light Light Moderate loderate/Heavy Heavy ery Heav none none none PEAK ACC.(%g) <.17 .17-1.4 1.4-3.9 3.9-9.2 9.2-18 18-34 34-65 65-124 >124 PEAK VEL(cm/s) <0.1 0.1-1.1 1.1-3.4 3.4-8.1 8.1-16 16-31 31-60 60-116 >118 INSTRUMENTAL INTENSITY 11-111 IV V VI н VII VIII IX X+

Earthquake Hazards Program

Magnitude 6.3 - CENTRAL ITALY

2009 April 06 01:32:39 UTC

Versión en Español

Details	Summary	Maps	Scientific & Technical	Additional Info	Where can I find?			
Earthquake Details								
Magnitude		6.3						
Date-Time		Monday, April 06, 2009 at 01:32:39 UTC Monday, April 06, 2009 at 03:32:39 AM at epicenter Time of Earthquake in other Time Zones						
Location		42.334°N, 13.334°E						
Depth		8.8 km (5.5 miles) set by location program						
Region		CENTRAL ITALY						
Distances		75 km (45 miles) W of Pescara, Italy 85 km (55 miles) NE of ROME, Italy 115 km (75 miles) SE of Perugia, Italy 145 km (90 miles) S of Ancona, Italy						
Location Uncertainty		Error estimate not available						
Parameters		NST=321, Nph=321, Dmin=6 km, Rmss=0 sec, Gp= 14°, M-type=teleseismic moment magnitude (Mw), Version=A						
Source		Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy						
Event ID		us2009fcaf						

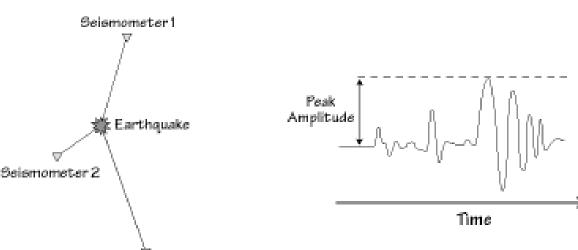
This event has been reviewed by a seismologist.

Did you feel it? Report shaking and damage at your location. You can also view a map displaying accumulated data from your report and others.

Preliminary Earthquake Report

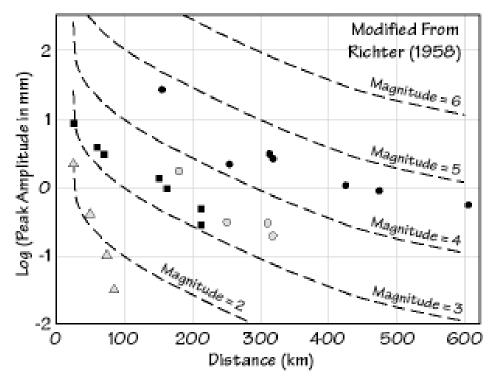
U.S. Geological Survey, National Earthquake Information Center: World Data Center for Seismology, Denver

EARTHQUAKE SIZE


How do we measure the size of an earthquake?

What other factors influence amplitude of signals on seismograms?

DEVELOPMENT OF MAGNITUDE SCALE


Seismometer 3

> expect signal amplitude to vary with distance to epicenter

> seismologists K Wadati and C Richter both noticed that peak ground motion of quakes varied with distance

> proposed magnitude scale through analogy with stellar brightness scale (similar to pH scale)

CONCEPT OF MAGNITUDE

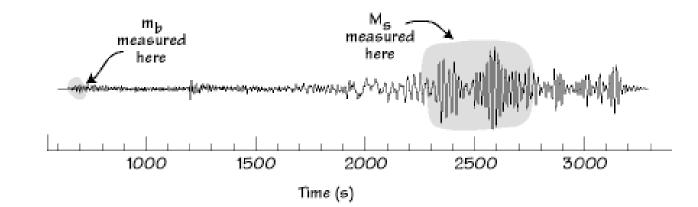
- > first measure of size was termed "magnitude"
- > magnitude scales have form:

$$M = \log(A/T) + F(h, \Delta) + C$$

A: signal amplitude

- $T: \operatorname{dominant} \operatorname{period}$
- $F(h,\Delta)$: correction for quake depth & distance C : regional scale factor

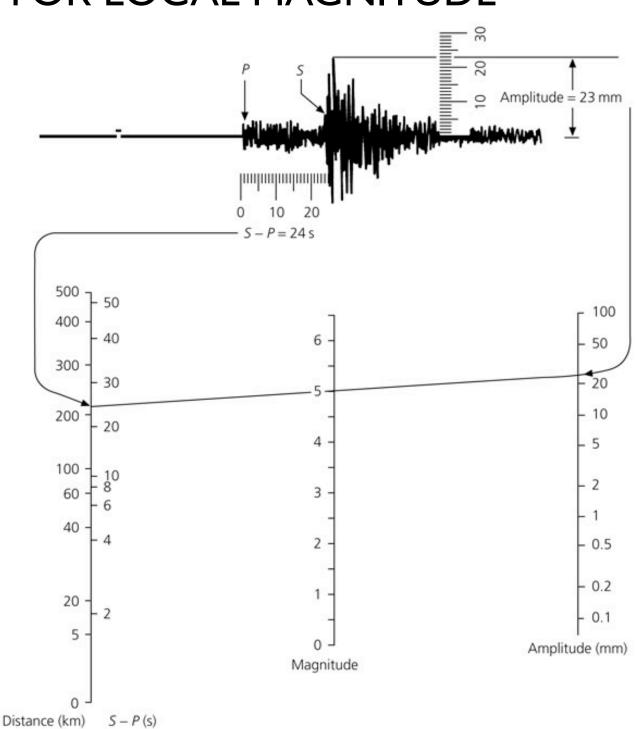
> logarithmic: unit increase equivalent to 10-fold increase in signal amplitude; necessary since earth motions span a range of 10^{10}


HISTORY OF MAGNITUDES

> first devised by Charles Richter in 1935 for S California: ``Richter Scale'' or ``local'' magnitude

 $M_L = \log A + 2.76 \log \Delta - 2.48$

> valid for Wood-Anderson seismograph (resonant frequency = 0.8 Hz) and uses S-wave amplitude


- > sometimes still reported since good indicator of structural damage
- > later modifications include global body wave and surface wave scales:
- $m_b = \log(A/T) + Q(h, \Delta) \qquad M_s = \log(A/T) + 1.6\log\Delta + 3.3$

RICHTER SCALE FOR LOCAL MAGNITUDE

> magnitude found from amplitude of largest arrival and the S-P travel time difference

in example, maximum
amplitude is 23mm and
S-P time is 24 s, yielding an
ML of 5.0

MAGNITUDES AS MEASURES OF EARTHQUAKE SIZE

ADVANTAGES:

I. directly measured from seismograms; no sophisticated signal processing required

2. yield units of order 1, providing intuitively attractive scale: M=5, moderate; M=6, strong, M=7, major, M=8, great etc.

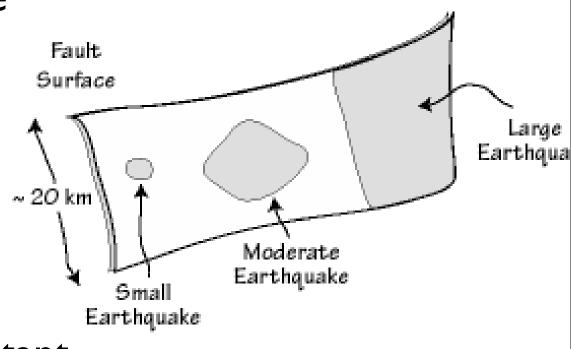
LIMITATIONS:

I. entirely empirical, not physically based (dimensions don't match)

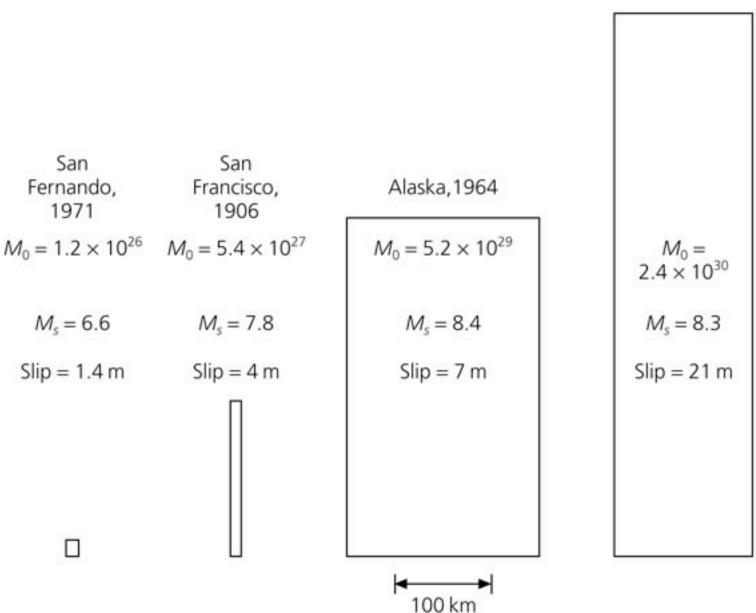
- 2. magnitudes often discrepant between scales
- 3. magnitude scales saturate

MAGNITUDE DISCREPANCIES

	Body wave	Surface wave	Fault	Average	Moment	Moment
	magnitude	magnitude	area (km ²)	dislocation	(dyn-cm)	magnitude
Earthquake	m_b	M_s	$length \times width$	(m)	M_0	M_w
Truckee, 1966	5.4	5.9	10×10	0.3	8.3×10^{24}	5.8
San Fernando, 1971	6.2	6.6	20×14	1.4	1.2×10^{26}	6.7
Loma Prieta, 1989	6.2	7.1	40×15	1.7	3.0×10^{26}	6.9
San Francisco, 1906		8.2	320×15	4	6.0×10^{27}	7.8
Alaska, 1964	6.2	8.4	500×300	7	5.2×10^{29}	9.1
Chile, 1960		8.3	800×200	21	2.4×10^{30}	9.5


> note discrepant body-wave and surface wave magnitudes (due to empirical nature, no account for radiation pattern, fault dimensions and locations can vary along fault etc).

> body-wave magnitudes saturate at ~6.2, surface wave magnitudes at ~8.4


THE SEISMIC MOMENT

- > a physically based measure of earthquake size/energy (units?)
 - $\mu\,$: rigidity (shear modulus) of fault materials
 - $D\,$:slip as function of time
 - $S\,$: fault area

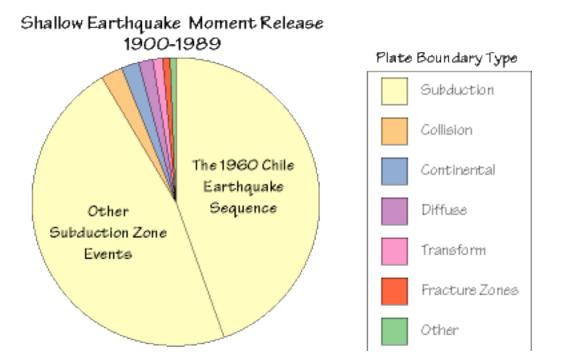
> latter terms are timedependent since they can vary during an earthquake but we approximate as constant

RELATIVE AREAS, SLIP MOMENTS OF SOME EARTHQUAKES

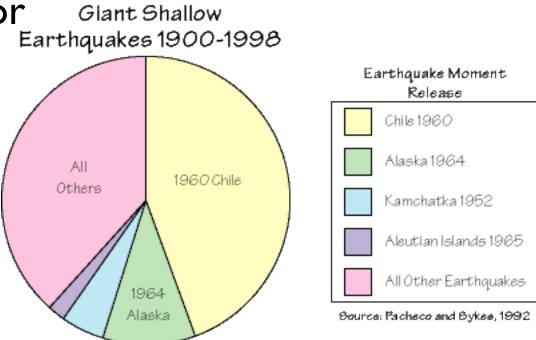
Chile, 1960

THE MOMENT MAGNITUDE

> moment estimated through sophisticated modelling of seismograms to estimate D, S


> define moment magnitude as:

$$M_w = \frac{\log M_0}{1.5} - 10.73$$


- > physically based with terms 1.5, 10.73 chosen to achieve good agreement with $\,m_b,\,M_s\,$
- > doesn't saturate
- > largest earthquakes bounded to $\,M_w < 10\,$

ENERGY RELEASE

> seismic moment and moment magnitude allow us to compare size of largest earthquakes

> find that energy release for earthquakes of last century is dominated by a few large subduction earthquakes

