Today (Mon Feb 27): Key concepts are

(1) how to make an earthquake: what
conditions must be met? (above and beyond
the EOSC 110 version)

(2) strain (matrix: cannot be represented as
a scalar or a vector quantity)

Elastic Rebound Theory of Reid (1908)
EOSC 110 version
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Surface velocities from survey data in the 1908
Lawson Report, and the earthquake cycle
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Coseismic surface displacements from a
typical, large strike-slip earthquake.
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Surface velocities from survey data in the 1908
Lawson Report, and the earthquake cycle

earthquake!

Plan view
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steady interseismic
slip at depth

one earthquake cycle
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interseismic deformation

(noted 1857-1906) relative motion of rigid plates

faults and earthquakes in
the upper crust

plates are STUCK
together in the top 20
km, except when an
earthquake allows
sudden relative motion

slowly flowing (creeping)
narrow zone at depth:

lithosphere extends plate boundary
down to the asthenosphere
asthenosphere STEADY™ “interseismic”

relative motion of plates at
this depth

*not exactly... but ok for now
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Vo is the velocity of Plate A relative to Plate B (averaged over
many earthquake cycles). “Locking depth” is d.

Here is what interseismic (between-earthquake) velocities
of points on the ground around a fault look like
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Blue = pre-Izmit earthquake GPS site velocities, 1-sigma
errors. Pink = modeled velocities.



Interseismic velocities of points on the ground:
fault-parallel velocity versus distance

D GPS surface velocity data for the North Anatolian Fault D’
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these velocities can be modeled using a simple arctangent
function that depends on V, (relative plate velocity),
distance to the fault, and “locking depth” d.

the relative plate motion rate V, for the NAFZ is 25 mm per year

there is no sudden jump in velocity across the plate-boundary fault

GPS surface velocity data for the North Anatolian Fault
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V' = surface velocity (set to be 0 at the fault)

&L = distance from the fault
V,, = relative plate velocity

d = locking depth

So - you can get Vo and d with a few GPS sites (if everything
goes right). VERY handy to know for earthquake forecasting.



Cascadia Subduction Zone
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How to make an earthquake:

Build up enough shear stress to exceed the
frictional strength of a fault, over a large enough
spatial surface area of a frictionally unstable
(“velocity weakening’) fault

(1) Building up shear stress (interseismic period):
We must define strain, elasticity, and stress (shear

stress and normal stress). First: strain and how we
measure it with GPS.

How to make an earthquake:

Build up enough shear stress to exceed the
frictional strength of a fault, over a large enough
spatial surface area of a frictionally unstable
(“velocity weakening’) fault

(1) Building up shear stress:
We must define strain, elasticity, and stress (shear stress and normal stress).
First: strain and how we measure it with GPS.

(2) Frictional strength of the fault:

We must define friction and (with normal stress) the
strength of the fault



How to make an earthquake:

Build up enough shear stress to exceed the
frictional strength of a fault, over a large enough
spatial surface area of a frictionally unstable
(“velocity weakening’) fault

(1) Building up shear stress:
We must define strain, elasticity, and stress (shear stress and normal stress).

First: strain and how we measure it with GPS.

(2) Frictional strength of the fault:
We must define friction and (with normal stress) the strength of the fault

(3) Other required conditions (“velocity-
weakening friction”, “large enough area” of the
fault:

We must understand the stability criteria for failure on
the fault, that is, conditions leading to an earthquake
rather than steady frictional creep on the fault

(1) Building up shear stress:

We must define strain, elasticity, and stress (shear stress
and normal stress). First: strain and then how we get it

from GPS displacement data.

dimensional.
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Hooke’s Law in 1D:
all that matters is the
lengthening of the spring.

In the Earth, stretching and
distortion is three-

We describe this as strain.



(1) Building up shear stress:

We must define strain, elasticity, and siress (shear siress
and normal stress). First: strain and then how we get it
from GPS displacement data.

D and D’ contain the same

material but all points have
X5 moved

Think of D as before the
LS earthquake and D’ as after it

What are the possible ways to change the

> %) configuration of this stuff?
X + translation
+ rotation
Figure 12.1 + strain (distortion, i.e. change
Figure by MIT OCW. in shape and/or volume)

Strain indicates distortion. We express it in terms of
how points in the material move relative to each other
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Suppose you know the coseismic displacements at
equally spaced points on a grid
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u(it’s our old friend vector subtraction!)

Aul is the displacement of one point relative to another.
Au = For example, the displacement at point P’ relative to
AUQ the displacement at point P.
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Congratulations! Now you know what the
“displacement gradient matrix” is.
This is ALMOST the strain matrix.

A matrix: a bunch of numbers

column 1 column 2 arranged in rows and columns.

Aul A’U,l
row 1 .. . .

Azxy Azo This is a matrix with 2

rows and 2 columns.
U2 A’LLQ

row 2

AZL‘l AZCQ

Do not fear the matrix - we
have to use it to describe
strain and stress in the Earth.

Congratulations! Now you know what the
“displacement gradient matrix” is.
This is ALMOST the strain matrix.

Suppose we named this matrix B.

column 1 column 2
Au; Aui  Convention is to use boldface: B
AZCl ACBQ

row 1

Individual numbers in the matrix are
fow 2 Auy  Augz  indicated with subscripts showing
Az, Axs the row and the column that the
number is in:

B2 is the entry in ROW 1 COLUMN 2




