Describing the fault geometry

How do you usually describe a plane (with lines)?

In geology, we choose these two lines to be:

• strike
• dip
• strike is the orientation of the line where the fault plane intersects the horizontal plane

• dip is the orientation of the line on the fault plane that is perpendicular to strike. It makes the steepest angle with respect to the horizontal (a ball would roll down it).
Profile view, as often shown on block diagrams

strike

30°

“hanging wall”

“footwall”
Categories of Faults

“Dip-slip” faults: slip is parallel to fault dip
- “Normal” fault
- “Thrust” or “reverse” fault

“Strike-slip” or “transform” faults slip is parallel to fault strike
Assume we are looking along strike (like the diagrams)

- “Normal” fault
- “Thrust” or “reverse” fault
- “Strike-slip” or “transform” fault

This one may be an “oblique” fault: normal plus SS (in and out of the screen)
Assume we are looking along strike (like the diagrams)
“Strike-slip” or “transform” fault?

“Normal” fault?

“Thrust” or “reverse” fault?

there's just one answer

1999 Izmit earthquake scarp

here, can we really tell?
Two kinds of strike-slip faults

Right-lateral
(dextral)

Left-lateral
(sinistral)

Stand with your feet on either side of the fault. Which side comes toward you when the fault slips?

Another way to tell: stand on one side of the fault looking toward it. Which way does the block on the other side move?
1992 M 7.4 Landers, California Earthquake rupture (SCEC)
Fault slip over geologic time

1 km in 50,000 years
= 20 mm/yr

during this time, ~200 major earthquakes

LL or RL?
San Andreas Fault from above

right lateral or left-lateral?

cumulative offset from many earthquakes can be tens of kilometers or more

strike-slip faults can be hard to see from above - why?

offsets of features with different ages...

choosing where to dig a trench and find the fault surface
Close-up view: gouge and breccia in the fault zone (major, active fault)

Close-up of breccia: broken up and re-cemented rock. Not as powdered as gouge.

The Elsinore fault, a strike-slip fault in California: powdery gouge in bedrock
Where is the Fault?

Is it active?
Trenching in Seattle: Looking for the fault in soil, and getting timing and size of prehistoric earthquakes

No road cut? Dig a trench (DIY roadcut)
Sometimes we just can’t see faults, especially if they do not have a recently formed scarp.

LIDAR (LIght Detection And Ranging) imaging strips the trees, houses, etc.

Now we can see the (obscured, partly eroded) Tacoma Fault scarp.

This shows geologists where to dig a trench...red lines are branches of the fault exposed in a trench.

Another LIDAR example from Seattle
How do we know the geometry of faults at depth?

SAFOD: San Andreas Fault Observatory at Depth. Valuable, but prohibitively expensive for most places!

Next week: Prof. Bostock will explain one way we find out a lot about subsurface structure without drilling (examples from our region: Cascadia)