## **Two Kinds of Seismic Waves**



body wave: travels through the inside the Earth



surface wave: travels along the surface of the Earth

## Seismic Body Waves

| Wave Type<br>(and names)                                         | Particle Motion                                                                                                                                                                                                          | Other Characteristics                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>P</b> ,<br><b>Compressional</b> ,<br>Primary,<br>Longitudinal | Alternating compressions<br>("pushes") and dilations<br>("pulls") which are directed<br>in the same direction as the<br>wave is propagating (along<br>the raypath)                                                       | P motion travels fastest in<br>materials, so the P-wave is the first-<br>arriving energy on a seismogram.<br>Generally smaller and higher<br>frequency than the S- and Surface<br>waves. P waves in a liquid or gas<br>are pressure waves, including sound<br>waves.      |
| S,<br>Shear,<br>Secondary,<br>Transverse                         | Alternating transverse<br>motions (perpendicular to<br>the direction of<br>propagation, and the<br>raypath); commonly<br>approximately polarized<br>such that particle motion is<br>in vertical or horizontal<br>planes. | S-waves do not travel through<br>fluids, so do not exist in Earth's<br>outer core (inferred to be primarily<br>liquid iron) or in air or water or<br>molten rock (magma). S waves<br>travel slower than P waves in a<br>solid and, therefore, arrive after the<br>P wave. |

modified from http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

What type of a seismic body wave is this?





http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

# What kind of a seismic body wave is this?





http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

## **Body Waves**

- P Waves (Primary, or Compressional)
  - change in volume of the material
  - the wave spreads out in all directions from the earthquake in 3D (spherical spreading)
  - fastest seismic wave
- S Waves (Shear, or Secondary)
  - change in shape of the material
  - spherical spreading
  - slower than P wave

## Seismic Surface Waves

| L, Love waves                          | Transverse horizontal<br>motion, perpendicular to<br>the direction of<br>propagation and<br>generally parallel to the<br>Earth's surface                             | $V_L \sim 2.0 - 4.5$ km/s<br>in the Earth<br>depending on<br>frequency of the<br>propagating wave | Love waves exist because of the<br>Earth's surface. They are largest at<br>the surface and decrease in<br>amplitude with depth. Love waves<br>are dispersive, that is, the wave<br>velocity is dependent on frequency,<br>with low frequencies normally<br>propagating at higher velocity.<br>Depth of penetration of the Love<br>waves is also dependent on<br>frequency, with lower frequencies<br>penetrating to greater depth. |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R, Rayleigh<br>waves, "Ground<br>roll" | Motion is both in the<br>direction of propagation<br>and perpendicular (in a<br>vertical plane).<br>Appearance and particle<br>motion are similar to<br>water waves. | $V_R \sim 2.0 - 4.5$ km/s<br>in the Earth<br>depending on<br>frequency of the<br>propagating wave | Rayleigh waves are also dispersive<br>and the amplitudes generally<br>decrease with depth in the Earth.                                                                                                                                                                                                                                                                                                                            |

Particles move perpendicular to wave propagation direction, and horizontally. What kind of a surface wave is this?





http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

## What kind of a surface wave is this?





http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

## Surface waves vs. body waves

#### Surface Waves

- circular spreading from a point (2D), like ripples from a pebble thrown into a pond
- amplitude decays as 1/(square root of distance)
- Body waves
  - circular spreading from a point (waves go out in 3D)
  - amplitude decays as 1/distance

Surface wave amplitudes decay less with distance traveled than body wave amplitudes do.

#### Animation of surface waves





## A seismogram

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Usually shows ground displacement vs. time or ground velocity vs. time

(Some show acceleration vs. time)

### Frequency: number of waves that pass per second





Wavelength: length of a wave in meters (trough to trough or peak to peak)

http://www.dosits.org/science/whatis/frequency.htm and math 309 webpage



Frequency and wavelength are related to wave speed

| speed | = frequency | X | wavelength |
|-------|-------------|---|------------|
| m/s   | cycles/s    |   | m/cycle    |

#### *Music:* Middle C (in air)

- frequency = 20
- wavelength =
- speed of sound in air =

261.63 Hz 1.32 m 345 m/s

#### How long are earthquake waves?



speed = frequency x wavelength

Average P-wave crustal velocity: ~6000 m/s or 6 km/s Frequencies: very broad range

- for 10 Hz waves, wavelength = 600 m
- for 1 Hz waves, about 6 km

#### How long are earthquake waves?



Surface wave velocities: slower ~ 2 km/s Frequencies: lower than body waves - for 0.2 Hz waves, wavelength = 10 km Amplitude? Up to **Meters** at the epicentre, smaller with distance

## Feb. 28/2001 Olympia Earthquake: *PGC records* 6.8 Mw, 52 km depth



#### geophone:

"tweeter"

"woofer"

## SEISMOMETERS, SEISMOGRAPHS, SEISMOGRAMS

I.What is a seismometer?

2. What is a seismograph?

3. What is a seismogram

A **seismometer** is a mechanical device that measures and amplifies ground motion at a point on the Earth's surface or in a borehole





A modern **seismograph** records ground motion (from a seismometer) in digital format onto magnetic or optical disk





# A **seismogram** is a visual representation of ground motion at a point in space as a function of time



## SEISMOMETERS MEASURE GROUND MOTIONS

> ground motions can be described and measured in different ways:

- I. ground displacement
- 2. ground velocity
- 3. ground acceleration

- QI. How are they related?
- Q2.Which is most useful?

## displacement u(t)

 $\frac{du(t)}{dt}$ 

velocity

 $\frac{d^2 u(t)}{dt^2}$ 

acceleration

## damage ~ force ~ acceleration

During large earthquakes, accelerations can approach or even exceed gravity

## SEISMOMETRY EXERCISE

> ground motions provide much important information on both earthquakes and Earth structure

>NO seismometer provides a perfect representation of ground motion, each one has an (imperfect) **response** 

> we will derive response for a simple damped pendulum seismometer

> GROUP EXERCISE: I want you to analyse this response to see how true ground motions are modified by seismometer

## SHORT/LONG PERIOD SEISMOMETERS & GEOPHONES

- > used prior to 1990's
- > work on damped pendulum
  theory
- > resonant frequency at I Hz, 0.1 Hz
- > mass incorporates solenoid which moves in a magnetic field
- > Faraday's law states

$$\epsilon = -\frac{d\Phi}{dt} \sim \frac{dv}{dt}$$



## MODERN BROADBAND SEISMOMETERS

> record motions faithfully between 100 - 0.001 Hz

> driven by sophisticated feedback electronic circuits

> motion is measured through voltage required to keep masses stationary



## STRONG MOTION SEISMOGRAPHS

> made from MEMS & sensitive to large accelerations

> regular seismometers go off scale

> used in triggered mode to study effects of large eq's

> employed by engineers to aid in design of earthquake resistant infrastructure



## SEISMIC NETWORKS

> arrays of seismometers deployed for a common purpose

- I. Global Seismic Network
- 2. Regional Networks
- 3. Portable Arrays
- 4. EarthScope

## **GLOBAL SEISMIC NETWORKS**



- > 150+ stations globally distributed
- > high quality stations with detection limit ~M=4

> partly underwritten by military agencies to aid in nuclear test ban verification treaties

## UNDER GROUND VAULT -KYRGYZSTAN



> note thermal insulation, concrete bunker

## SOUTH POLE SITE



> some sites involve seismometers in boreholes to minimize noise

## **REGIONAL SEISMOGRAPH NETWORKS**

> Japanese Hi-Net has over 600 short-period, borehole stations

> since 2000, has led to many important discoveries

> 10-20 km spacing





## CANADIAN NATIONAL SEISMOGRAPH NETWORK (B.C.)

> G.S.C. operates ~30
seismographs in SW
B.C.

> note concentration on V.I. and lower mainland



## PACIFIC NORTHWEST SEISMIC NETWORK

- > UW operates ~100 sp and ~10-20 BB sites through Washington and Oregon
- > significant data exchange between CNSN and PNSN Accelerometer: Measures
  - Accelerometer: Measures strong ground motion.
  - Seismometer (3 component): Measures vertical and N-S and E-W ground motions.

 Seismometer (1 component): Measures only vertical ground motions.







## **PORTABLE ARRAYS**

> many countries possess portable instruments used for temporary field campaigns

Canada: POLARIS (Portable
 Observatories for Lithospheric
 Analysis and Research
 Investigating Seismicity

> can be used in aftershock or structural studies



## PORTABLE ARRAY VAULTS

makeshiftvaults with solarpower

> data archived onto loggers that record continuously

> typical deployment
I-2 years





> new generation of portable experiment; cover whole USA at 70 km spacing
> each station active for 18 months, deployed roll-along array over 15 years

### SEISMOGRAMS

2001 Feb 28, Tacoma-Olympia earthquake, Ms=6.9(OGS)



> incredibly rich and varied in appearance depending on source, frequency content, distance etc.