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Abstract: Limit equilibrium types of analysis have been in use in geotechnical engineering for a long time and are
now used routinely in geotechnical engineering practice. Modern graphical software tools have made it possible to gain
a much better understanding of the inner numerical details of the method. A closer look at the details reveals that the
limit equilibrium method of slices has some serious limitations. The fundamental shortcoming of limit equilibrium
methods, which only satisfy equations of statics, is that they do not consider strain and displacement compatibility.
This limitation can be overcome by using finite element computed stresses inside a conventional limit equilibrium
framework. From the finite element stresses both the total shear resistance and the total mobilized shear stress on a slip
surface can be computed and used to determine the factor of safety. Software tools that make this feasible and practical
are now available, and they hold great promise for advancing the technology of analyzing the stability of earth
structures.
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Résumé : Les analyses du type équilibre limite ont été utilisées depuis longtemps en géotechnique et sont maintenant
utilisées de façon routinière dans la pratique de l’ingénierie géotechnique. Les outils informatiques graphiques
modernes ont permis d’obtenir une bien meilleure compréhension des détails numériques internes de la méthode. Un
examen plus poussé des détails révèle que la méthode d’équilibre limite des tranches comporte de sérieuses limitations.
Le défaut fondamental des méthodes d’équilibre limite, qui ne satisfont que les équations de la statique, est qu’elles ne
prennent pas en compte la compatibilité entre la déformation et le déplacement. Cette limitation peut être surmontée en
utilisant des contraintes calculées par éléments finis à l’intérieur du cadre conventionnel d’équilibre limite. En partant
des contraintes d’éléments finis, on peut calculer le long de la surface de glissement la résistance totale au cisaillement
de même que la contrainte totale de cisaillement mobilisée et les utiliser pour déterminer le coefficient de sécurité. Les
outils informatiques qui rendent faisables et pratiques ces analyses sont maintenant disponibles et offrent de grandes
possibilités pour faire avancer la technologie d’analyse de la stabilité des structures en terre.

Mots clés : équilibre limite, stabilité, coefficient de sécurité, éléments finis, contraintes du terrain, surface de glisse-
ment.
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Introduction

Limit equilibrium types of analysis to assess stability have
been used in geotechnical engineering for decades. The con-
cepts have been widely applied to the stability analysis of
earth slopes. The idea of discretizing a potential sliding mass
into vertical slices was introduced early in the 20th century.
In 1916, Petterson (1955) presented the stability analysis of
the Stigberg Quay in Gothenberg, Sweden where the slip
surface was taken to be circular and the sliding mass was
divided into slices. During the next couple of decades or so,
Fellenius (1936) introduced the Ordinary or Swedish method
of slices. In the mid-1950s, Janbu (1954) and Bishop (1955)
developed advances in the method. The advent of electronic
computers in the 1960s made it possible to more readily

handle the iterative procedures inherent in the method,
which led to mathematically more rigorous formulations
such as those developed by Morgenstern and Price (1965)
and by Spencer (1967). The introduction of powerful desk-
top personal computers in the early 1980s made it economi-
cally viable to develop commercial software products based
on these techniques, and the ready availability today of such
software products has led to the routine use of limit equilib-
rium stability analysis in geotechnical engineering practice.

Modern limit equilibrium software is making it possible to
handle ever-increasing complexity in the analysis. It is now
possible to deal with complex stratigraphy, highly irregular
pore-water pressure conditions, various linear and nonlinear
shear strength models, almost any kind of slip surface shape,
concentrated loads, and structural reinforcement. Limit equi-
librium formulations based on the method of slices are also
being applied more and more to the stability analysis of
structures such as tie-back walls, nail or fabric reinforced
slopes, and even the sliding stability of structures subjected
to high horizontal loading arising, for example, from ice
flows.

While modern software is making it possible to analyze
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ever-increasingly complex problems, the same tools are also
making it possible to better understand the limit equilibrium
method. Computer-assisted graphical viewing of data used
in the calculations makes it possible to look beyond the
factor of safety. For example, graphically viewing all the
detailed forces on each slice in the potential sliding mass, or
viewing the distribution of a variety of parameters along the
slip surface, helps greatly to understand the details of the
technique. From this detailed information, it is now becom-
ing evident that the method has its limits and that it is
perhaps being pushed too far beyond its initial intended pur-
pose. Initially, the method of slices was conceived for the
situation where the normal stress along the slip surface was
primarily influenced by gravity (weight of the slice). Includ-
ing reinforcement in the analysis goes far beyond the initial
intention.

Based on the author’s many years of experience with sup-
porting a commercial slope stability software package
(SLOPE/W 2001), it seems that the fundamentals of the
limit equilibrium method of slices are not well understood,
despite the routine use of the method in practice. The fact
that the limit equilibrium method of slices is based on noth-
ing more than statics often seems to be forgotten, and the
significance of one factor of safety for all slices is not appre-
ciated.

The objective here is to firstly take a fresh look at the
fundamentals of the limit equilibrium method of slices with
the aid of graphically presented results using modern soft-
ware tools. The second objective is to use these graphical
presentations to highlight the consequences of a stability
analysis method that satisfies statics but ignores strain and
displacement. The third main objective is to show how the
results from a finite element stress–strain analysis can be
married with a limit equilibrium framework to overcome the
method’s shortcomings.

General limit equilibrium method

Various solution techniques for the method of slices have
been developed and are in common use. The primary differ-
ence among all these methods lies in which equations of
statics are considered and satisfied, which interslice normal
and shear forces are included, and the assumed relationship
between the interslice forces. Figure 1 illustrates a typical
slice in a potential sliding mass with the forces acting on the
slice. Normal and shear forces act on the slice base and on
the left and right sides of the slice. Table 1 summarizes the
conditions for some of the common methods. This table lists
which equations of equilibrium are satisfied, whether the
interslice normal is included, whether the interslice shear is
considered, and what the assumed relationship between the
interslice normal and shear forces is.

A general limit equilibrium (GLE) formulation was devel-
oped by Fredlund at the University of Saskatchewan in the
1970s (Fredlund and Krahn 1977; Fredlund et al. 1981).
This method encompasses the key elements of all of the
methods listed in Table 1. The GLE formulation is based on
two factor of safety equations and allows for a range of
interslice shear-normal force conditions. One equation gives
the factor of safety with respect to moment equilibrium
(Fm), while the other equation gives the factor of safety with

respect to horizontal force equilibrium (Ff). The idea of
using two factor of safety equations was actually first pub-
lished by Spencer (1967).

The interslice shear forces in the GLE method are handled
with an equation proposed by Morgenstern and Price (1965).
The equation is

[1] X E f x= λ ( )

where f (x) is a function, λ is the percentage (in decimal
form) of the function used, E is the interslice normal force,
and X is the interslice shear force. Figure 2 shows a typical
half-sine function. The upper curve in this figure is the ac-
tual specified function. The lower curve is the function used.
The ratio between the two curves is λ . Lambda (λ) in Fig. 2
is 0.43. At slice 10, f (x) = 0.83. If, for example, E = 100 kN,
then X = E f (x) λ = 100 × 0.43 × 0.83 = 35.7 kN. The arctan
of 35.7/100 is equal to 19.6°. This means that the interslice
resultant force is inclined at 19.6° from the horizontal at
slice 10. One of the key issues in the limit equilibrium
formulation, as will be illustrated later, is knowing how to
define this interslice function.

The GLE factor of safety equation with respect to moment
equilibrium is

[2] F
c R N u R

Wx Nf Dd
m = ∑ ′ + − ′

∑ − ∑ ±
[ ( ) tan ]β β φ

The factor of safety equation with respect to horizontal
force equilibrium is

[3] F
c N u

N D
f = ∑ ′ + − ′

∑ −
[ cos ( ) tan cos ]

sin cos
β α β φ α

α ω

where
c′ is the effective cohesion
′φ is the effective angle of friction

u is the pore-water pressure
N is the slice base normal force
W is the slice weight
D is the line load

β, R, x, f, d, ω are geometric parameters
α is the inclination of slice base

(There are additional terms in eqs. [2] and [3], but they
are not required here for this discussion.)

One of the key variables in both equations is N, the nor-
mal at the base of each slice. This equation is obtained by
the summation of vertical forces. Vertical force equilibrium
is consequently satisfied. In equation form, the base normal
is defined as
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Fig. 1. Slices and forces in a sliding mass.
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where F is Fm when N is substituted into the moment factor
of safety equation, and F is Ff when N is substituted into the
force factor of safety equation. The literature on slope stabil-
ity analysis often refers to the denominator as ma.

A very important point here is that the slice base normal
is dependant on the interslice shear forces XR and XL on ei-
ther side of a slice. The slice base normal is consequently
different for the various methods depending on how each
method deals with the interslice shear forces.

The GLE method computes Fm and Ff for a range of λ
values. With these computed values, a plot such as that
shown in Fig. 3 can be drawn that shows how Fm and Ff vary
with λ .

As listed in Table 1, Bishop’s simplified method ignores
interslice shear forces and satisfies only moment equilib-

rium. In the GLE terminology, no shear forces means λ is
zero. As a result, the Bishop factor of safety falls on the mo-
ment  curve  in  Fig.  3  where λ is  zero.  Janbu’s  simplified
method also ignores interslice shear forces and only satisfies
force equilibrium. The Janbu factor of safety consequently
falls on the force curve in Fig. 3 where λ is zero. The
Spencer and Morgenstern–Price (M-P) factors of safety are
determined at the point where the two curves cross in Fig. 3.
At this point, the factor of safety satisfies both moment and
force equilibrium. Whether the crossover point is the
Spencer or M-P factor of safety depends on the interslice
force function. Spencer only considered a constant X/E ratio
for all slices, which in the GLE formulation corresponds to
a constant (horizontal) interslice force function. The M-P
method can utilize any general appropriate function. The
Corps of Engineers and Lowe–Karafiath factors of safety
fall on the force curve in Fig. 3. The position on the force
curve depends on the procedure used to establish the inclina-
tions of the interslice resultant. The inclination of the
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Method
Moment
equilibrium

Horizontal force
equilibrium

Interslice
normal (E)

Interslice
shear (X) Inclination of X/E resultant

Ordinary or Fellenius Yes No No No No force
Bishop’s simplified Yes No Yes No Horizontal
Janbu’s simplified No Yes Yes No Horizontal
Spencer Yes Yes Yes Yes Constant
Morgenstern–Price Yes Yes Yes Yes Variable
Corps of Engineers – 1 No Yes Yes Yes Inclination of a line from crest to toe
Corps of Engineers – 2 No Yes Yes Yes Slice top ground surface inclination
Lowe–Karafiath No Yes Yes Yes Average of ground surface slope and

slice base inclination

Table 1. Statics satisfied and interslice forces in various methods.

Fig. 2. Half-sine interslice force function. Fig. 3. A factor of safety versus λ plot.
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interslice resultant is arctan (λ) when f (x) is a constant 1.0 as
in the Spencer method.

In the GLE formulation, the methods are not restricted
by the shape of the slip surface. It is true that the Bishop
method was initially developed for circular slip surfaces, but
the same assumptions inherent in the Bishop method can
also be applied to noncircular slip surfaces. All the methods
listed in Table 1 can be used to analyze any kinematically
admissible slip surface shape with the GLE formulation.

Sliding mass contortion

The importance of the interslice force function depends to
a large extent on the amount of contortion the potential slid-
ing mass must undergo to move. The function is not impor-
tant for some kinds of movement while the function may
significantly influence the factor of safety for other kinds of
movement. The following examples illustrate this sensitivity.

Circular slip surfaces
Figure 4 presents a simple circular slip surface together

with the associated factor of safety (FS) versus λ plot. In this
case the moment equilibrium is completely independent of
the interslice shear forces as indicated by the horizontal
moment equilibrium curve. The force equilibrium, however,
is dependant on the interslice shear forces.

The moment equilibrium is not influenced by the shear
forces because the sliding mass as a free body can rotate
without any slippage between the slices. Substantial inter-
slice slippage is, however, necessary for the sliding mass to
move laterally; as a consequence the horizontal force equi-
librium is sensitive to interslice shear.

Since the moment equilibrium is completely independent
of interslice shear, any assumption regarding an interslice
force function is irrelevant. The interslice shear can be
assumed to be zero, as in the Bishop simplified method, and
yet obtain an acceptable factor of safety, provided the
method satisfies moment equilibrium. This is, of course, not
true for a method based on satisfying only horizontal force
equilibrium, such as the Janbu simplified method. Ignoring
the interslice shear when only horizontal force equilibrium is
satisfied for a curved slip surface results in a factor of safety
significantly different than when both force and moment
equilibrium are satisfied.

The moment equilibrium curve is not always perfectly
horizontal for circular slip surfaces. The moment curve in
Fig. 3 was obtained from a circular slip surface analysis, and
it is slightly inclined. Usually, however, the slope of the
moment curve is nearly horizontal. This is why the Bishop
and Morgenstern–Price factors of safety are often similar for
circular slip surfaces.

Planar slip surface
Figure 5 illustrates a planar slip surface. The moment and

force equilibrium curves now have reverse positions from
those for a circular slip surface. Now force equilibrium is
completely independent of interslice shear, while moment
equilibrium is fairly sensitive to the interslice shear. The soil
wedge on the planar slip surface can move without any slip-

page between the slices. Considerable slippage is, however,
required for the wedge to rotate.

Composite slip surface
A composite slip surface is one where the slip surface is

partly on the arc of a circle and partly on a planar surface as
illustrated in Fig. 6. The planar portion in this example fol-
lows a weak layer, a common situation in many stratigraphic
settings. In this case, both moment and force equilibrium are
influenced by the interslice shear forces. Force equilibrium
factors of safety increase while moment equilibrium factors
of safety decrease as the interslice shear forces increase
(higher λ values).

This illustrates that a Bishop simplified type of analysis
does not always err on the safe side. A more rigorous formu-
lation such as the Morgenstern–Price or Spencer method will
give a lower factor of safety than a Bishop simplified factor
of safety. This is not necessarily true for all composite slips
surfaces. For some composite slips surfaces a mathemati-
cally more rigorous factor of safety may be higher than the
Bishop simplified. It is not possible to generalize as to when
a more simplified factor of safety will or will not err on the
safe side.

Slippage between the slices needs to occur for both mo-
ment and force equilibrium for a slip surface of this shape
and, consequently, the interslice shear is important for both
types of equilibrium.

Block slip surface
Figure 7 shows a block-type slip surface. As with the

previous composite slip surface, the moment and force equi-
librium are both influenced by the interslice shear. The force
equilibrium is more sensitive to the shear forces than the
moment equilibrium, as indicated by the curve gradients in
Fig. 7. Once again it is easy to visualize that significant slip-
page is required between the slices for both horizontal trans-
lation and rotation, giving rise to the importance of the shear
forces.

Shoring wall
Figure 8 provides an example that examines the deep

seated stability of a shoring wall. The slip surface is beneath
the lower tip of the sheet piling. This example comes from
the analysis of a deep excavation in downtown Calgary, Al-
berta. The FS versus λ plot shows that the moment and force
equilibrium curves are similar in this case. They are both
very sensitive to the interslice shear forces. Ignoring the
interslice shear forces for this case results in a significant
underestimation of the factor of safety. Without including
the interslice shear forces, the factor of safety is less than
1.0, indicating an unstable situation. Including the shear
forces increases the factor of safety to 1.22. The difference
again is due to the contortion the potential failing mass
would have to undergo to rotate or move laterally.

Contrasting material

Switzerland uses berms to deflect the path of snow ava-
lanches. The photograph in Fig. 9 shows one of these berms
constructed to protect a church high in the mountains. These
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Fig. 5. Situation for a planar slip surface.

Fig. 6. Situation for a typical composite slip surface.

Fig. 4. Conditions for a simple circular slip surface.
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Fig. 7. Typical situation for a block slip surface.

Fig. 8. A deep stability analysis of a shoring wall.

Fig. 9. Snow avalanche berm in Switzerland (courtesy, Dr. Steiner, Bern, Switzerland).
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berms must have a steep face to deflect the snow flow. If the
face is too flat, there is danger of the avalanche running up
and over the face. A typical inclination is 68° (5v:2h). At
this angle the embankment slope is unstable, and conse-
quently they are protected and stabilized with a stone face.
Another important element in the stability is that the stone
face be keyed into the ground at the toe of the berm.

Steiner (W. Steiner1, personal communication, 1995) was
faced with the design task of increasing the height of one of
these berms from 12 to 16 m. As part of his work, he
back-analyzed some stable berms that had been in existence
for a long time. The existing performance of the berms in-
ferred a high factor of safety. A routine limit equilibrium
analysis however, gave very low safety factors. The Bishop
factor of safety was around 0.9, and a Spencer factor of
safety was around 1.1. Steiner was of the opinion that the
analysis did not properly represent the high shear strength of
the stone face. In his view, the interlocking nature of the
stone provided a much higher resistance than the analysis in-
dicated.

Figure 10 shows an analysis cross-section of the berm.
The stone face is 1.5 m thick at the base and narrows to
1.0 m at the top. The material properties are as follows:

Only one slip surface is presented here to illustrate the
effect of the interslice function.

Analyzing the situation with a constant interslice function
results in the FS versus λ plot shown in Fig. 11. The force
and moment equilibrium curves are nearly parallel, which
confirms the importance of the interslice shear in this case.
The crossover point is at a factor of safety of about 1.11,
which Steiner believed was not representative of the actual
stability conditions.

Steiner was of the view that the interslice forces could be
better represented by a step function like the one in Fig. 12.
When using this step function the resulting FS versus λ plot
is as in Fig. 13. The moment and force equilibrium curves
are now even closer but the crossover point is now at a
factor of safety of 1.42.

The purpose here is not to comment on the merits or
applicability of the step function but to show an example
where the solution is very sensitive to the assumed interslice
force function. The difficulty and uncertainty of defining a
suitable function for a case like this limits what can be done
with a limit equilibrium type of analysis.

Concentrated loads

As mentioned in the introduction, limit equilibrium tech-
niques are ever more being extended to analyzing walls
stabilized with tie-back anchors, nails, or geofabrics. Since

limit equilibrium is all about statics, any of these structural
elements in essence become concentrated line loads.
Locally, these loads can create some unrealistic conditions.

Consider the simple case of a near vertical slope with two
anchors as shown in Fig. 14. The applied force for each
anchor is 150 kN.

One of the issues in a case like this is deciding where to
apply the line load on the sliding mass free body. Should the
line load be applied where the line of action intersects the
slip surface, or at the wall face, or somewhere in between?
Additionally, should the line load be included in the force
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Fig. 10. Avalanche berm analysis section.

Fig. 11. Berm analysis results with a constant (horizontal)
interslice force function.

Property Soil Stone

γ (kN/m3) 21 22
C (kPa) 0.0 0.0
φ (°) 36 42

Note: γ, unit weight; C, cohesion; φ, friction angle.

1 Use of a stepped-interslice function for the back-analysis and design of a rock-faced avalanche protection dam. Report prepared for the
Department of Public Work, Canton Grisons, Switzerland (1985, unpublished).
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equilibrium of each slice or just in the equilibrium of the
sliding mass as a whole? If the line load is included in the
equilibrium of each slice, then the line load will affect the
base normal of the slice which, in turn, will affect the shear
strength at the base of the slice. Fundamentally, the question
is, how does the structural line load influence the normal
stress along the slip surface?

First, consider the case with the line (anchor) load applied
on the slip surface where the line of action intersects the slip
surface. The anchor force is included in the equilibrium of
the slice that has the line of action extending through the
slice base. For this particular example, the upper anchor
passes through the base of slice 8 and the lower anchor
passes through the base of slice 13. Free body diagrams and
force polygons for the two slices with the anchor load are

presented in Fig. 15. The force polygons close indicating the
slices are in force equilibrium.

The interslice normals on the right side of the slices point
away from the slices, indicating tension. This is actually true
for many of the slices as can be seen by the interslice force
plot in Fig. 16. The interslice normal is nearly equal to the
shear since λ is nearly 1.0 for this case. The upper anchor
makes the interslice normal become negative at slice 8, then
the normal becomes less negative until it is positive for one
slice. The lower anchor, however, makes the interslice nor-
mal become negative again. Finally, the normal becomes less
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Fig. 12. Berm interslice step function.

Fig. 13. Berm analysis results with interslice step function.

Fig. 14. A tie-back wall example.

Fig. 15. Free bodies and force polygons for slices 8 and 13.
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negative and ends up close to zero. These interslice normal
forces may be totally unreasonable but, despite this, all the
slices are in complete force equilibrium as indicated by the
closure of the force polygons for each slice.

When looking at the exact same situation but with the an-
chor loads applied at the wall, the interslice forces are now
completely different. Figure 17 again shows the interslice
shear and normal forces. The normal force increases evenly
and gradually except for the last two slices. Of interest is the
interslice shear force. The direction is now the reverse of
that which usually occurs when only the self weight of the
slices is included (simple gravity loading). The shear stress
reversal is a reflection of a negative λ.

Applying the anchor line loads on the wall results in per-
haps a somewhat better interslice force distribution, but now
the base normal force for the first slice or two behind the
wall is affected by the anchor load. This also does not seem
proper.

The large differences in the interslice forces also lead to
significantly different normal stress distributions along the
slip surface as shown in Fig. 18. It was noted earlier that the
equation for the normal at the base of the slices includes
terms for the interslice shear forces. This example vividly
illustrates this effect.

Interestingly, in spite of the different stresses between the
slices and along the slip surface, the factors of safety are
nearly identical for these two treatments of the concentrated
line loads, i.e.,

With the anchors applied at the slip surface location, the
factor of safety is 1.075; while when they are applied at the
wall, the factor of safety is 1.076. For all practical purposes
they are the same. The reason for this is discussed later.

Convergence issues

Another important issue with using a limit equilibrium
approach to analyze the stability of very steep slopes (walls)
is the difficulty of obtaining convergence. The denominator
in the slice base normal equation is commonly known as ma,
as noted earlier. As the slice base inclination increases, the
ma term increases and eventually reaches a point where it is
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Fig. 16. Interslice shear and normal forces with anchor loads ap-
plied at the slip surface.

Fig. 17. Interslice shear and normal forces with anchor loads ap-
plied at the wall.

Fig. 18. Normal stress distributions along the slip surface.

Anchor force location Factor of safety

On slip surface 1.075
On wall 1.076
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not possible to compute a normal that will satisfy the force
equilibrium of the slice. In numerical terms this manifests
itself in nonconvergence of the factor of safety equations
that must be solved by iterative techniques because of the
nonlinearity of the equations. The nonlinearity arises from
the fact that the term for the factor of safety (F) occurs on
both sides of the equation.

Not being able to compute a factor of safety is bad
enough, but the minimum factor of safety is often located
immediately next to the area where nonconvergence be-
comes a problem. Sometimes the minimum factor of safety
is among nonconverged slip surfaces. The critical slip sur-
face is often in the proximity of the active wedge line
inclined at 45 + φ/2, which is also the inclination at which
the convergence difficulties frequently start. The difficulty is
that the critical factor of safety can be somewhat suspect
when its neighbors represent a nonconverged case.

A typical situation is portrayed in Fig. 19. In this example
a converged solution could not be obtained for most of the
grid rotation centres in the lower right hand triangular area.
The grid rotation centres without a factor of safety beside
them are the ones where it was not possible to get a con-
verged solution. These nonconverged grid centres mostly
represent steep slip surfaces. The critical grid rotation centre
is represented by the point with the larger dot and is sur-
rounded by points for which it was not possible to obtain a
converged solution.

Forces outside the sliding mass

When structural components are included in a limit equi-
librium analysis, the influence of the structure can extend
outside the potential sliding mass. A typical case is the
embedment of steel sheet piling beneath the base of an exca-
vation as illustrated in Fig. 20. The issue is how to include
the lateral resistance provided by the buried portion of the
sheet piling when looking at a potential mode of failure
where the slip surface exits at the excavation base. The pas-
sive resistance in front of the pile is an integral part of the
stability of the system, but it is outside the free body of the
sliding mass. It is not possible to include the shear strength
of the steel piling. The analysis of the snow avalanche berm
showed the difficulty with trying to incorporate the strength
of a structure. This is even worse for a high strength material
such as steel.

One way of including the passive resistance in front of the
wall is to do an independent analysis. This could be done
with closed-form solutions or even with a limit equilibrium
analysis. The computed available force can then be included
in the wall stability analysis as a line load just above the slip
surface exit point as shown in Fig. 20.

The issue is further complicated by the fact that the pas-
sive resistance is sensitive to the friction between the wall
and the soil. The passive earth pressure coefficient can vary
greatly depending on the assumed friction between the soil
and the steel. Also, large movement is sometimes required to
develop the complete passive resistance. To account for this,
only a portion of the passive resistance can be relied upon in
the wall stability analysis. In other words, the passive resis-
tance needs its own factor of safety, which is likely much
higher than the factor of safety for the wall stability.

Another possible approach is to include a line load in the
summation of moments and forces that acts outside the free
body diagram representing the potential sliding mass. The
passive toe resistance could be represented by such a line
load even though the load itself does not act on the soil
wedge. Not all slices will then, however, be in force equilib-
rium.

Slip surface normal forces

As was pointed out earlier, one of the key variables in a
limit equilibrium method of slices analysis is the normal
force at the base of the slice. Further, the normal force is de-
pendent on the assumptions made regarding the interslice
shear forces. The examples discussed here indicate that the
base normals can vary greatly depending on the point where
the concentrated loads are applied. This section looks at the
meaning of the normal stress distribution along a slip surface
as obtained from a limit equilibrium analysis.

To begin, take the simple 45° slope in Figs. 21 and 22
with a slip surface through the toe and another deeper slip
surface below the toe. The normal stress distribution along
the slip surface from a limit equilibrium Morgenstern–Price
analysis with a constant interslice force function is com-
pared with the normal stress distribution from a lin-
ear–elastic finite element stress analysis. For the toe slip
surface, the normal stresses are quite different, especially in
the toe area. The normal stress distributions for the deeper
slip surface are closer but still different for a good portion of
the slip surface.

Figure 23 presents a case with reinforcement. The line
loads are applied at the point where the slip surface inter-
sects the line of action. Again there are significant differ-
ences between the limit equilibrium normal stresses and the
finite element stresses, particularly for the slices that include
the line loads. The finite element stresses show some in-
crease in normal stresses due to the nails but not as dramatic
as the limit equilibrium stresses.

These examples show that the stress conditions as
computed from a limit equilibrium analysis may be vastly
different from finite element computed stresses. The finite
element stresses are more realistic and are much closer to
the actual conditions in the ground. The implication is that
the limit equilibrium computed stresses are not representa-
tive of actual field conditions, yet the limit equilibrium
seems to give reasonable factors of safety.

Limit equilibrium forces and stresses

The question is, why can such unrealistic stresses give a
seemingly reasonable factor of safety? The answer lies in the
fundamental assumption that the factor of safety is the same
for each slice. The limit equilibrium method of slices re-
quires iterative techniques to solve the nonlinear factor of
safety equations. In the Morgenstern–Price or Spencer meth-
ods, a second level of iterations is required to find the slice
forces that result in the same Fm and Ff. Fundamentally, the
iterations are required to meet two conditions, namely
(1) to find the forces acting on each slice so the slice is in

force equilibrium, and
(2) to find the forces on each slice that will make the fac-

tor of safety the same for each slice.
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This means that interslice and slip surface forces are not
necessarily representative of the actual in situ conditions, but
they are the forces that satisfy the above two conditions for
each slice.

If the slice forces are not representative of actual in situ
ground conditions, then it is also not possible to determine a
realistic line of thrust for the interslice shear-normal resul-
tant. The forces on each slice that meet the above two condi-
tions can result in a line of thrust outside the slice, a further
indication that the slice forces are not always realistic.

Fortunately, even though the limit equilibrium statics for-
mulation locally does not give realistic slice forces, the fac-

tor of safety globally is nonetheless realistic. Once all the
mobilized driving forces and base resisting shear forces are
integrated, the local irregularities are smoothed out making
the overall factor of safety for the entire sliding mass quite
acceptable.

As a footnote, it is interesting that the early developers of
the method of slices recognized the limitations of computing
realistic stresses on the slip surface. Lambe and Whitman
(1969) in their text book Soil Mechanics point out that the
normal stress at a point acting on the slip surface should be
mainly influenced by the weight of the soil lying above that
point. This, they state, forms the basis of the method of
slices. Morgenstern and Sangrey (1978) state that one of the
uses “… of the factor of safety is to provide a measure of
the average shear stress mobilized in the slope.” They go on
to state that, “This should not be confused with the actual
stresses.” Unfortunately, these fundamental issues are some-
times forgotten as use of a method is gradually adopted in
routine practice.

While the early developers of the method of slices intu-
itively recognized that the slice stress may not be real, they
did not have finite element tools to demonstrate the way in
which they differ from the actual ground stresses. Now, with
the help of finite element analyses, it is possible to show that
the difference is quite dramatic.
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Fig. 19. Convergence difficulties at grid location points without safety factors.

Fig. 20. Inclusion of pile embedment resistance in a limit equi-
librium analysis.
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In the context of stress distributions it is of interest to
examine the Janbu generalized formulation (Janbu 1954,
1957). The Janbu generalized method imposes a stress distri-
bution on each slice. The interslice stress distribution is
often assumed to be hydrostatic, and the resultant is assumed
to act on the lower third point along the side of the slice. A
line passing through the resultants of the slice vertical sides

is known as the line of thrust. Assuming a line of thrust and
taking moments about the base of each slice makes it possi-
ble to determine the magnitudes of the interslice force.

This approach works reasonably well provided the actual
stress distribution in the ground is close to the imposed
stress distribution. Like, for example, when the slip surface
has no sharp corners and the sliding mass is long relative to
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Fig. 21. Normal stress distributions along a toe slip surface.

Fig. 22. Normal stress distributions along a deep slip surface.

Fig. 23. Normal stress distributions along a slip surface with wall reinforcement.
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the slide depth. More generally, the approach works well
when the potential sliding mass has no significant stress
concentrations. If stress concentrations exist that deviate
significantly from the Janbu generalized imposed stress dis-
tribution, the problem is overconstrained. This leads to con-
vergence problems and lack of force equilibrium for some
slices. This is particularly true when features like anchors or
nails are included in the analysis. As Abramson et al. (2002)
point out, the calculations for the Janbu generalized method
are very sensitive to the line of trust location.

Earlier it was mentioned that the line thrust could poten-
tially fall outside the slice. With the GLE method the slices
are always in force equilibrium, but it is possible that the
interslice forces would have to act outside the slice for the
slice itself to be in moment equilibrium. The Janbu general-
ized approach, on the other hand, forces the line of thrust to
be at a particular point on the side of the slice, but this may
lead to the slice not being in force equilibrium. So it is not
always possible to achieve both conditions. Sometimes the
line of thrust needs to be outside the slice to have slice force
equilibrium, or the slice cannot be in force equilibrium if the
line of thrust is fixed at a particular point on the slice.

The behavior of the Janbu generalized method reinforces
the earlier observation that limit equilibrium methods based
purely on statics can in some circumstances overconstrain
the problem, which results in unrealistic stress conditions. In
this sense the Janbu generalized approach is no different
from any other limit equilibrium method. The inherent inter-
slice force assumptions are different, but in the end the limi-
tations are similar.

Missing physics

The limit equilibrium method of slices is based purely on
the principle of statics; that is, the summation of moments,
vertical forces, and horizontal forces. The method says noth-
ing about strains and displacements, and as a result it does
not satisfy displacement compatibility. It is this key piece of
missing physics that creates many of the difficulties with the
limit equilibrium method.

One alternative to dealing with the difficulties inherent in
limit equilibrium types of analysis is to set aside the whole
concept of using statics and move totally to a stress–strain
based approach. Ideally, the objective would be to model the
complete load–deformation behavior of a structure right up
to the point of failure and in many cases well past the point
of failure. The question being asked more and more these
days is, “What will the structure or ground look like after
failure?” Stated another way, the interest is in post-failure
deformation or in the consequence of failure.

Stress–strain finite element software based on a displace-
ment formulation has been available for some time, and such
software is readily available for use in practice. A displace-
ment formulation requires that all the elements in a mesh
remain attached at the nodes. This limits the amount of de-
formation that can be modelled. Furthermore, displacement
formulations that can handle nonlinear constitutive relation-
ships have great difficulty with convergence as the system
approaches failure (Fig. 24). The finite element equations
are in essence equations of equilibrium, and when loads are

applied that push the system past the point of limiting equi-
librium, it is not possible to obtain a solution to the finite
element equations. This manifests itself in nonconvergence.

Discrete element formulations are better suited to looking
at failure and post-failure behavior. In these formulations
(Cundall and Strack 1979), individual particles, blocks, or
elements that were initially connected may separate, trans-
late, and rotate individually, and they can potentially form
new contacts with other blocks. These techniques are partic-
ularly useful for studying the mechanism of failure and large
post-failure displacements. Discrete element software prod-
ucts are not yet routinely used in practice, particularly not in
geotechnical engineering, and the method is therefore not an
alternative to replacing limit equilibrium methods — at least
not yet.

Another drawback to finite element analyses by them-
selves is that they do not give a direct indication of the mar-
gin of safety; that is, a quantitative measure of how close the
system may be to collapse. A statement frequently seen in
publications is, “it was not possible to obtain convergence
past a certain loading, indicating the structure had reached
failure.” The end point where the factor of safety is 1.0 is
indirectly known, but the margin of safety along the path is
not known.

The exact point of failure is difficult to determine. One
of the criteria used, as already mentioned, is the non-
convergence of the solution (Zienkiewicz 1971). With this
approach the shear strength parameters in a nonlinear analy-
sis are reduced until numerical instability occurs. The factor
of safety is then taken to be a ratio of the actual available
shear strength and the lowest strength that resulted in a con-
verged solution. Recent studies on slope stability analysis
using the strength reduction approach have been published
by Dawson et al. (1999) and Griffiths and Lane (1999). The
difficulty with using nonconvergence as a criteria is that
there are many factors that can cause numerical instability.
Some of the more common factors are incremental load-step
size, gravity loading procedures, low confining stresses near
the ground surface, purely frictional materials with no cohe-
sion, and initial in situ stress conditions. So deciding
on what is causing the numerical instability is not trivial
and consequently nonconvergence is a somewhat uncertain
criteria for determining the point of failure and defining the
margin of safety.

A further downside of leap-frogging to an entirely new
approach for analyzing the stability of geotechnical struc-
tures is that it does not provide a reference point. One of the
attractions of the limit equilibrium method is that it has been
in use for many years and has been calibrated with experi-
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Fig. 24. An illustrative load deformation curve.
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ence and observations. A totally new approach provides no
such anchor.

The remainder of this paper presents an approach that
combines the benefits from a finite element stress–strain
analysis with the familiarity of a traditional method of slices
limit equilibrium analyses. It is an approach that advances
the technology and yet provides an anchor to the past.

Finite element computed stresses in a limit
equilibrium framework

As already noted above, one of the key factors in the limit
equilibrium factor of safety equation is the expression that
defines the normal force at the base of each slice. If deter-
mining the normal base force is so problematic, then why
not determine this important parameter from the results of a
finite element stress analysis? The integration of limit equi-
librium software such as SLOPE/W (2001) with finite ele-
ment stress–deformation software such as SIGMA/W (2001)
makes this possible.

Figure 25 shows a simple 45° slope discretized into finite
elements. Using a simple gravity turn-on technique, the
stresses in the ground can be computed. Using a linear–
elastic constitutive relationship, the vertical stresses are as
presented in Fig. 26. This is typical of the information avail-
able from a finite element analysis. The basic information
obtained from a finite element stress analysis is σx , σy , and
τxy within each element.

Worth noting at this stage is the 50 kPa contour, which is
not a constant distance from the ground surface. The contour
is closer to the surface under the toe. This means that the
vertical stress is not just influenced by the overburden
weight. It is also affected by the shear stress.

The finite element computed stresses can be imported into
a conventional limit equilibrium analysis. The stresses σx ,
σy , and τxy are known within each element, and from this in-
formation the normal and mobilized shear stresses can be
computed at the base midpoint of each slice. The procedure
is as follows:
(1) The known σx , σy , and τxy at the Gauss numerical inte-

gration point in each element are projected to the nodes
and then averaged at each node. With the σx, σy, and τxy
known at the nodes, the same stresses can be computed
at any other point within the element.

(2) For slice 1, find the element that encompasses the x–y
coordinate at the base mid-point of the slice.

(3) Compute σx , σy , and τxy at the midpoint of the slice
base.

(4) The inclination (α) of the base of the slice is known
from the limit equilibrium discretization.

(5) Compute the slice base normal and shear stress using
ordinary Mohr circle techniques.

(6) Compute the available shear strength for the computed
normal stress.

(7) Multiply the mobilized shear and available strength by
the length of the slice base to convert stress into forces.

(8) Repeat the process for each slice in succession up to
slice number n.

Once the mobilized and resisting shear forces are avail-
able for each slice, the forces can be integrated over the

length of the slip surface to determine a stability factor. The
stability factor is defined as

[5] F.S. r

m

= ∑
∑

S
S

where Sr is the total available shear resistance and Sm is the
total mobilized shear along the entire length of the slip sur-
face. Similar stability factor expressions have been presented
by others (Kulhawy 1969; Naylor 1982).

Figure 27 shows a potential sliding mass discretized into
slices superimposed on the finite element mesh. Following
the procedure listed above, the stability factor for this slip
surface is 1.318. This compares with a Morgenstern–Price
factor of safety of 1.145 (constant interslice function). This
is about a 15% difference.

The reason for the difference in the margin of safety is
primarily related to the normal stress distribution along the
slip surface. The finite element and limit equilibrium normal
stress distributions for this particular slip surface were pre-
sented earlier in Fig. 21. The significantly different normal
stresses in the toe area result from the shear stress concen-
tration in this part of the section. Localized shear stress con-
centrations are, of course, not captured in a limit equilibrium
formation where the slice base normal is derived primarily
from the slice weight. This is one of the limitations of the
limit equilibrium method.

The situation is somewhat different for a deeper slip as
shown in Fig. 22. The finite element and limit equilibrium
normal stress distributions along the slip surface are much
closer for this case. Consequently the stability factor based
on   finite   element   stresses   is   almost   the   same   as   the
Morgenstern–Price factor of safety. The stress-based stabil-
ity factor is 1.849 while the Morgenstern–Price factor of
safety is 1.804. This shows that, when the normal stress dis-
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Fig. 25. A finite element mesh for establishing in situ stresses.

Fig. 26. Vertical stress contours.
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tribution along the slip surface is fairly representative of the
actual ground stresses, the limit equilibrium factor of safety
is as good as a stress-based factor of safety.

An added advantage of the finite element stress based ap-
proach is that it creates the possibility of looking at local
safety factors for each slice. Figure 28 shows the variation of
the local safety factor for the toe and deep slip surfaces. In-
cluded in the figure is the limit equilibrium factor of safety,
which is the same for each slice.

For the deep slip surface, the two global factors of safety
are almost identical. Locally, however, the safety factors are
both smaller and greater than the global value represented in
this figure by the constant limit equilibrium factor of safety.
Integrating the total available shear resistance and total mo-
bilized shear along the slip surface averages the variation
making the two factors of safety the same.

The difficulties with convergence in limit equilibrium
analyses were discussed earlier. The stress-based approach
completely eliminates this problem. The factor of safety is
obtained directly without any iterations. Figure 29 shows an
example of a grid of rotation centres with factor of safety
contours. The contours now cover the complete grid con-
firming that a valid value was calculated for each grid point.
Moreover, any question as to which is a valid minimum
factor of safety is no longer an issue.

As an aside, the large number of grid points in Fig. 29 in-
side the 1.5 contour is of interest. This shows there are a
large number of potential slip surfaces with a factor of safety
between 1.409 and 1.500. In other words, there is a zone
where many slip surfaces have similar safety factors. This is
typical for a near vertical wall with the slip surface exiting at
the base of the wall.

One of the very attractive features of doing a stability
analysis based on finite element computed stresses is that
soil–structure interaction can be handled in a direct manner.
The difficulty of dealing with forces outside the sliding mass
was earlier noted in the discussion on dealing with sheet pil-
ing embedment below the slip surface. Another similar situa-
tion is the use of a shear key wall placed across a slip
surface to stabilize a slope as illustrated in Fig. 30. The fac-
tors of safety, both based on finite element stress, with and
without the structure are 1.52 and 1.17, respectively. In this
case there is no need to try to represent the wall resistance
with a line load as in a limit equilibrium analysis, and there
is no need to independently determine the line load magni-
tude. The stiffness of the structure is included in the finite

element analysis, which alters the stress state and which, in
turn, increases the margin of safety.

This approach also opens the door to looking at stability
variations due to ground shaking during an earthquake. The
stresses can come from a dynamic finite element analysis
(QUAKE/W 2001) the same as from a static stress analysis.
The stresses computed during a dynamic earthquake analysis
can be saved at regular intervals during the shaking. A factor
of safety then can be computed for each moment in time that
the stresses are available, and in the end a plot of factor of
safety versus time, such as in Fig. 31, can be created. This
type of a plot can be readily created for each and every trial
slip surface. This is a great improvement over the historic
pseudostatic approach still used so routinely in practice.

Commentary on finite element stress-based
stability analysis

The use of finite element computed stresses inside a limit
equilibrium framework to assess stability has many advan-
tages. Some of them are as follows:
• There is no need to make assumptions about interslice

forces.
• The stability factor is deterministic once the stresses have

been computed, and consequently there are no iterative
convergence problems.

• The issue of displacement compatibility is satisfied.
• The computed ground stresses are much closer to reality.
• Stress concentrations are indirectly considered in the sta-

bility analysis.
• Soil–structure interaction effects are readily handled in the

stability analysis.
• Dynamic stresses arising from earthquake shaking can be

directly considered in a stability analysis.
The finite element based approach presented here over-

comes many of the limitations inherent in a limit equilibrium
analysis. At the same time, it does raise some new issues.

It is necessary to first carry out a finite element stress
analysis with the proposed approach. Fortunately, the neces-
sary software tools are now readily available and relatively
easy to use. However, it does mean that the analyst must
become familiar with finite element analysis techniques.

Fortunately, a finite element stress analysis is fairly
straightforward if the material properties are restricted to
simple linear–elastic behavior. Besides being relatively sim-
ple, using only linear–elastic soil models always ensures a
solution since there are no convergence difficulties as with
nonlinear constitutive models. A linear–elastic analysis is
adequate in many cases to obtain a reasonable picture of the
stress conditions. It certainly gives a much better stress dis-
tribution picture than that obtained from a limit equilibrium
analysis. Nonlinear constitutive relationships are often
essential if the main interest is deformation but not if the
main interest is a stress distribution. Furthermore, even
approximate linear–elastic properties are adequate to get a
reasonable stress distribution and consequently not a great deal
of effort is required to define the linear–elastic parameters.

The results from a simple linear–elastic analysis may
mean that the computed stresses in some zones are higher
than the available soil strength. This manifests itself as a
local factor of safety of less than 1.0 for some slices, which
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Fig. 27. A toe slip surface on a finite element mesh.
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is not physically possible. Ideally, nonlinear constitutive
models should be used to redistribute the stresses such that
the applied stresses do not exceed the strength. However, us-
ing nonlinear constitutive relationships greatly complicates
the analysis, primarily because of the associated numerical
convergence issues. Ignoring local safety factors that are less
than unity is not all that serious. Physically, it means that
neighboring slices have a local safety factor that is too high.
Since all the mobilized and resisting shear forces are tallied

along the entire slip surface, local irregularities are
smoothed out and therefore have little effect on the total
forces that are used in computing the global factor of safety
for the entire sliding mass. This is an indirect form of aver-
aging but not nearly to the extent that is inherent in the limit
equilibrium formulation where the factor of safety is the
same for all slices.

Figure 32 shows the local factor of safety distribution for
a simple 2h:1v slope when the stresses are determined using
a linear–elastic analysis and an elastic–plastic analysis. The
linear–elastic stresses result in local safety factors less than
1.0. The elastic–plastic analysis redistributes the stresses and
then none of the local safety factors are less than 1.0. The
global factors of safety are however, nearly identical. For the
linear–elastic case the global factor of safety is 1.206 and for
the elastic–plastic case the global factor of safety is 1.212,
less than half a percent difference.

Using the finite element computed stresses means that the
stability calculations now involve the horizontal stresses as
well as the vertical stresses. This is good and bad. The good
part is that various Ko (σx /σy ratio) conditions can be consid-
ered in a stability analysis. The bad part is that the Ko must
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Fig. 28. Local factors of safety for the toe (left) and the deep (right) slip surfaces.

Fig. 29. Grid of safety factors obtained from a finite element
stress-based analysis.

Fig. 30. A shear-key wall for slope stabilization.

Fig. 31. Factor of safety variations during earthquake shaking.
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be defined. In a linear–elastic gravity turn-on analysis, the
ratio of σx /σy is reflected through Poisson’s ratio (ν). For
level ground, Ko = ν/(l – ν). Different Ko conditions will give
different safety factors. Fredlund et al. (1999) studied the
effect of varying Poisson’s ratio on the factor of safety. For-
tunately, defining appropriate Ko conditions is not an impos-
sibility. It is certainly not so difficult as to prevent the use of
finite element stresses in assessing stability.

The biggest disadvantage of using a finite element
stress-based approach to analyzing stability at this time is
not so much technical as it is the lack of experience with the
method in geotechnical engineering practice. This will likely
change now that the necessary software tools are readily
available.

Concluding remarks

Geotechnical limit equilibrium stability analysis tech-
niques, as has been demonstrated in this paper, have limita-
tions. The limitations arise chiefly because the method does
not consider strain and displacement compatibility. This has
two serious consequences. One is that local variations in
safety factors cannot be considered, and the second is that
the compute stress distributions are often unrealistic. To
allow for variations in local safety factors along the slips
surface and to deal with somewhat realistic stresses, the
formulation and analysis technique needs to include a
stress–strain constitutive relationship. It is the absence of a
stress–strain relationship in conventional limit equilibrium
analysis methods that is the fundamental piece of missing
physics.

The limit equilibrium method for analyzing stability of
earth structures remains a useful tool for use in practice in
spite of the limitations inherent in the method. Care is re-
quired, however, not to abuse the method and apply it to
cases beyond its limits. To effectively use limit equilibrium
types of analyses, it is vitally important to understand the
method, its capabilities, and its limits, and not to expect
results that the method is not able to provide. Since the
method is based purely on the principles of statics and says
nothing about displacement, it is not always possible to
obtain realistic stress distributions. This is something the
method cannot provide and consequently should not be ex-
pected. Fortunately, just because some unrealistic stresses

perhaps appear for some slices does not mean the overall
factor of safety is necessarily unacceptable. The greatest
caution and care is required when stress concentrations exist
in the potential sliding mass due to the slip surface shape or
due to soil–structure interaction.

A detailed understanding of the method and its limits
leads to greater confidence in the use and in the interpreta-
tion of the results. Getting to this position means looking at
more than just factors of safety. To use the limit equilibrium
method effectively, it is also important to examine the de-
tailed slice forces and the variation of parameters along the
slip surface, at least sometime during the course of a project.
Looking at a FS versus λ plot, for example, is a great aid in
deciding how concerned one needs to be about defining an
interslice force function.

Also, limit equilibrium analyses applied in practice should
as a minimum use a method that satisfies both force and mo-
ment equilibrium such as the Morgenstern–Price or Spencer
methods. With the software tools now available, it is just as
easy to use one of the mathematically more rigorous meth-
ods than to use the simpler methods that only satisfy some
of the statics equations.

At this stage the proposed integrated method is likely the
most applicable where conventional limit equilibrium meth-
ods have numerical difficulties as in vertical or near vertical
walls with some kind of reinforcement. The method is per-
haps not all that applicable in the stability of natural slopes
where it is not easy to accurately determine the stresses in
the slope because of the complex geological processes that
created the slope. In the analysis of natural slopes where the
potential slip surface does not have sharp corners and there
are no high stress concentrations, the conventional limit
equilibrium method is perhaps more than adequate in spite
of its limitations.

The tools required to carry out geotechnical stability anal-
yses based on finite element computed stresses are today
readily available. Applying the tools is now not only feasible
but also practical. Unforeseen issues will possibly arise in
the future, but such details will likely be resolved with time
as the method is used more and more in geotechnical engi-
neering practice.

Using finite element computed stresses inside a limit equi-
librium framework to analyze the stability of geotechnical
structures is a major step forward since it overcomes many
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Fig. 32. Local safety factor distributions for linear–elastic and elastic–plastic stress conditions.
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of the limitations of traditional limit equilibrium methods
and yet provides an anchor to the familiarity of limit equilib-
rium methods so routinely used in current practice.
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