

<u>C</u> (r	e	L	e	r	niı	ng	6)0	al	<u>s</u>			~~~~						~~~~						
Ву	t	he	en	d	of	th	is	co	urs	e	yoı	u v	vill	be	a	ble	: †	o :									
1)	Ē	xpl	air	t	he	es	se	nti	al	me	th	od	s o	f (Ge	olo	aic	al	En	air	iee	rin	a	de	sia	n	
	~	d	hr		tic		inc	luc	lin	. 1	ho	ir	te	ord	ti	h	of	si	to	ch	ard	ict	or	170	tic	n	
~~~~	1		-								h					min	Ľ						01	4			
~~~~	-		10		y q	aric :	a		ys	13, -1	ric	120	U.C	ar		115		us:	585 1.	SU			un	u			
	p	TO	es	510	na	IS	su	es	su	cn	as		SS	CO	nT	roi	, V	vor	кe	r s	στ	ет	y a	Ind			
	p	tor	es:	510	nal	e	thi	CS.				ļ															
2)	R	eco	ogn	ize	e a	nd	di	ff	ere	nt	iat	e	the	e a	dv	ers	e	ef	fec	:ts	th	at	ge	los	ogy	/	
	a	h	ge	olo	gic	al	pr	oc	ess	es	c	an	ha	ve	or	i si	te	С	nd	iti	ons	a	nd				
	e	nai	hee	zri	ha	de	sic	ns	0	inc	+	hat	t e	nai	ne	eri	na	de	esid	ans	C	n	ha	ve	or		
	tł	ne	sit	e	cor	di	tio	ns	an	d	hat	tur	al	en	vir	onr	ne	nt			~~~~				~~~		
				Ē						-																	
3)	A	SSG	ess	tł	ne	lin	vita	itio	ons	0	f "	te	xtl	200	k	apı	orc	ac	he	s"	to	Ge	eol	oai	ca		
~.	F	hai	no	əri	no	de	sid	n	and		no	and	• •	n			0	in	or	ta	int		nd	l n	edi	100	
		-L	-	1.01		+														tai					-6	7	
	<u>rı</u>	24	re	Iu I	eu	10	, g	20	iog	100	AL V	ar	IUL	/111	Y	url	u l	aric	сі.	u	(11)	•					
															~~~				~~~~								
		ļ																									
						1 - C	1.00	£	-		÷ .	1	1				-	1.								-	

<u>C</u>	ou	rs	e	L	<u>.e</u> (	ir	ni	ng		Go	<u>al</u>	<u>s</u>															
4)	Co	mp	ar	e	an	d. (	col	ntr	as	t d	liff	er	ent	ar	al	yti	ca		em	pir	ic	al	anc	 			
	nu	ne	ric	al	te	ol	s١	ise	d	in	geo	ote	chi	ice	4	de	sig	n,	an	d	de	mo	nst	ra	te	hou	N
	th	ese	2.5	hc	oulo	<b>1</b>	lot	b	e I	Jse	d	as	a s	ub	sti	tu	te	fo	r 1	hi	nki	ng	bu	t.	as .	an	
~~~~	aic	1 †	0 .	the	e e	ng	jin	eer	in	g t	ho	ugł	nt o	and	d	ec	isio	on .	ma	iki	ng	pr	oce	ess	••••		
5)	Ju	sti	fv	d	es	ian	a	รรเ	Im	pti	ons	: a	nd	lev	el	of	d	eta	ail	in	de	sic	n				
	ca	CU	lat	io	ns	re	la	tiv	e :	to	the	2 0	roi	ect	s	ta	ne	(f	ror	n I	ore	fe	asi	bil	itv		
	th	col	iał	t	0	0	nst	ru.	cti	ion	ir	npl	em	ent	at	ior		nd	b	ert	or	ma	inc	e)	a	nd	
	up	da	te.	0		rd	lind	- lv	ŧł	Iro	unt	n it	ter	ativ	10	de	sid	n	20	n	2W	de	ta		hd		
	kn	ow	lec	lae	2 1	5 0	nai	nea	1		- <u>-</u>																
6)	Co	mp	ar	e	an	d (col	ıtr	as	t e	xa	mp	les	of	ti	·ue	li	fe	G	eol	og	ica	ļ				
	En	gin	ee	ri	ng	de	esi	gn	pr	ob	len	ıs,	so	luti	on	s i	m	le	me	nt	ed	ar	d	les	sol	ns	
	leo	irn	ed		and	1	arc	lue	t	he	val	lue	of	ca	se	h	ist	ori	es	a	hd	ne	ed	fo	or.		
	lif	elo	na	le	ear	ni	na	an	d	pro	ofe	ssi	onc	ıl d	ev	ela	ppr	nei	nt.	fo	r 6	iec	loc	ic	al		
	En	ain	lee	rs			1										•										
					[
	∕.		22	of	46			Eni	K F	her	hard	I+ -	UR	Ge	aloc	ica	Fn	oine	ori	20		FO	SCA	33	536	(20)	1

HSC 433 → C	× A A A A A A A A A A A A A A A A A A A	ovrázedzěm		 	~~~~	~~~~			~ .
OSC 43	33 - Geotechnical Engineering Practice 3 Course Material - PDF Downloads)			 					~
Week	Jacking			 					
Week 1: (Sep. 7)	Lecture 1 - Introduction	Lab 1 - Problem Set #1 Resource Material - Stress & Strain Review Resource Material- Nobr Circle Review		 					
Week 2: (Sep. 14)	Lecture 2a - New Tools for Data Collection Lecture 2b - Instrumentation Planning	Lab 2 - Problem Set #2 Resource Material - Hoek et al. (2002) on Rock Mass Properties		 					~
Week 3: (Sep. 21)	Lecture 3 - The Observational Approach	Lab 3 - Open-Ended Design Problems: Induction Most In Lab (E05-M 203) Hendouts to be provided in (ab		 ~~~~	~~~	~~~	~~~~	~~~~	~
Week 4: (Sep. 28)	Lecture 4- Kinematic Analysis Resource Material - Stereonet Review	Resource Material - Wedge Volume Calculation Lab 4 - Wedge Kinematics Assignment Lab 4 - Wedge Kinematics Answer Sheet Design Problem 1 - Gradies & Rock Botting Design Problem 1 - Gradies Bubric		 					~
Week 5: (Oct. 5)	Lecture 5 - Empirical Design Methods	Lab 5 - Problem Set #3		 					
Week 6:	No Lecture - Open Ended Design Problem Work Session.	No lab. Design problem drop-in.							
Week 7: (Oct. 19)	Lecture 6- Limit Equilibrium Analysis Resource Haterial - John Krahn on Limit Equilibrium 🍈	Lab 6 - Limit Equilibrium Assignment Lab 6 - Limit Equilibrium Analysis Answer Sheet Design Problem 2 - Setback Olstance Problem		 ~~~~			~~~	~~~~	~
Week 8: (Oct. 26)	Lecture 7 - In Situ Stress	Lab 7 - Design Problem Peer Review Design Problem 2 - Grading Rubric Design Problem 2 - Peer Revision Grading Rubric	-	 	~~~~	~~~~		~~~~	~~
Week 9: (Nov. 2)	Lecture 8 - Stress Analysis Resource Material - Evert Hoek on Numerical Methods	Lab 8 - Boundary Element Assignment Lab 8 - Boundary Element Analysis Answer Sheet Design Problem 3 - Crown Pillar Problem Design Problem 3 - Grading Rubric		 					~~
Veek 10: (Nov. 9)	Lecture 9 - Rock Stabilization Principles	Lab 9 - Rock-Support Interaction Assignment Lab 9 - Rock-Support Interaction Answer Sheet							
Veek 11: Nov. 16)	Lecture 10 - Deformation Analysis and Elasto-Plastic Yield	Lab 10 - Finite Element Assignment Lab 10 - Finite Element Analysis Answer Sheet Design Problem 4 - Crown Pillar/Pit Wall Interaction Problem Design Problem 4 - Grading Rubric							<u>_</u>
Veek 12: Nov. 23)	Lecture 11 - Discontinuum Analysis and the Distinct-Element Method	Lab 11 - Distinct Element Assignment Lab 11 - Distinct Element Analysis Answer Sheet							
Neek 13:	Lecture 12 - Stress-Induced Brittle Failure	No Lab Scheduled							
Neek 13:	Lecture 12 - Stress-Induced Brittle Failure	No Lab Scheduled				_			_

<u>Neek 1</u> : Introduction	Lab 1 - Problem set	: #1
-coarse overview; rock as an engineering naterial; design methodologies.		
<u>Neek 2</u> : New Tools for Data Collection	Lab 2 - Problem set	: #2.
data quality and confidence; remote sensing		
ools for discontinuity mapping		
Neek 3: Observational Approach	Lab 3 - Lab Introdu	ıction
phenomenological vs mechanistic	to Design Process.	
ipproaches; Terzaghi's observation method; ise of monitoring data in design.		
Neek 4: Kinematic Analysis	Lab 4 - UNWEDGE	
structurally controlled failure; wedge	_exercise & Design Pr	oblem
olume calculations; key block theory.	#1	

Course Outline	
<u>Week 5</u> : Empirical Design	
- derivation and application: rock mass	Lab 5 - Problem Set #3
classification vs. characterization; GSI	
Week 6: No Lecture	Lab – No lab. Design
- Design problem work session.	problem drop-in.
Week 7: Limit Equilibrium Analysis	Lab 6 - SLIDE/LEM
- factor of safety: back & forward analysis:	exercise & Design Problem
probabilistic analysis.	#2
<u>Week 8</u> : In Situ Stress	Lab 7 - Design Problem
- stress as a boundary condition; direct	Peer Review.
vs. indirect measurement methods.	
Week 9: Stress Analysis	Lab 8 - EXAM ^{2D} /BEM
- Kirsch equations; boundary-element method.	exercise & Design Problem #3
25 of 46 Enile Ehenhandt - UPC Coologica	Engineering EOSC433/536 (201

<u>Course Outline</u>	2	
<u>Week 10</u> : Rock Sta	bilization Principles	Lab 9 - RocSupport
- support vs. reinforc	ement strategies; ground	exercise.
esponse curves; supp	ort interaction curves.	
<u> Neek 11</u> : Analysis (of Yielding Rock	Lab 10 - RS2/FEM
elasto-plastic yield;	viour; failure criterion; finite-element analysis.	exercise and Design Problem #4.
<u>Veek 12</u> : Analysis (of Jointed Rock	Lab 11 - UDEC/DEM
- joint stiffness & s distinct-ele	trength; scale-effects; ment analysis	exercise
<u>Veek 13</u> : Stress-C	ontrolled Failure	Lab - No lab.
brittle fracture prod	cesses; spalling; rock	
oursting.		
26 of 46	Erik Eberhardt - UBC Geological I	Engineering EOSC433/536 (201

Genera	I Information	
Lectures:	Thursdays from 13:00 to 15:00 (ESB 2012)	
Labs: l	L2A-Fridays from 14:00 to 16:00 (EOS-M 203) L2B-Thursdays from 16:00 to 18:00 (EOS-M 203)	
TA's:	Afshin Amini (aamini@eoas.ubc.ca)	
Grades: p	problem sets (2) lab assignments (best 5 of 6) open-ended design problems (4) final exam 50%	
Contact I	Info - Office: 251 EOS South E-mail: <u>erik@eoas.ubc.ca</u>	
Course Wo	/eb Page - <u>/eoas.ubc.ca/courses/eosc433/eosc433.htm</u>	
→← 27	7 of 46 Erik Eberhardt - UBC Geological Engineering EOSC433/536 (201	17)

Seneral In	form	atio	n										
ext Book - T	he text	tbook	(ор	tion	al)	to b	e u	sed	for	this	c 0	urse	: is:
ROCK					~~~~~								
MECHANICS For underground	"Roo	ck Me	zcho	nics	for	· Un	der	grou	Ind	Min	ing	" by	1
THEO EDITION	B.H	G. E	Brad	y ar	nd E	. T .	Bro	own,	Sp	ring	er:		
B. H. G. Brady and E.T. Brown	Dor	drecl	1t, i	2006									1
		1			~~~~								1
		1			~~~~								1
Contraction of the second second													1
or another	option	that	isn'	t as	mir	ning-	ori	ente	d:		1~~~1		
ENGINEERING													
MECHANICS	"Eng	ginee	ring	Roc	k M	ech	anic	:s -	An	Int	rod	uctio	m
A NINE	to t	he Pi	rinci	ples	" E	y J	. A .	Hu	lsor	i and	1 J	. P .	
	Har	rison	, El	sevie	er S	iciel	ice	Оx	for	d, 1	997	•	
Party server and a state		1	1										
Constant of Constant of Constant		1	1		~~~~							(
												•	7~^~
ecture Notes	- PDF's	of t	hese	e Po	wer	poin	t sl	ides	wil	I be	ma	de	
vailable for de	ownload	via 1	the	cour	se	veb	pag	je.	11-				
				-		-		-		_		-	

De	<u>sic</u>	n	N	le	th	00	<u>10</u>	10	gy	<u> </u>								~~~~		~~~						^
Suc	ces	sfu	l ei	ngi	nee	rin	g c	les	ign	in	vol	ves	a	de	sigi	n p	roc	es	5, 1	wh	ich	is	a			
sequ	ien	ce	of	eve	nts	5 W	ith	in	wh	ich	de	esig	n (dev	relo	ps	log	ica	lly	. B	ier	iiav	vsk	ă 👘		í.
(19	93)	sul	nm	ari	zeo	۵	10	s	tep	m	etl	nod	olo	gy	for	· r	ock	er	ngil	nee	rin	g (les	ign		
prot	oler	ns,	inc	or	por	ati	ng	6 0	des	igr	P	rind	ip	es		~~~~		~~~~		~~~				-		
	~~~~			~~~				~~~~	~~~~		~~~~					~~~~	~~~`		~~~	~~~~	~~~~					~~
STEP	DE	SCRIP	TION							DES	SIGN NCIPL	.e	]		Ste	D	1:		5ta	ite	me	nt	of	th	e	
1	Sta	tement	of the	proble	em (per	formar	nce obj	ectives	s)	1			] ~~	1000						Ľ	prol	ble	m			1~
2	Fu	able ar	I requi	remen an issu	ts and es)	constr	raints (	design	1	1			]			~~~	~~~~		~~~~							~
3	Co roc	lection k prope	of info	roundv	on (site vater, in	charai situ st	cterizat	ion, )		2			]				~~~~	~~~·	~~~~	~~~			ert	for	nan	C
4	Co	ncept f	ormula	tion (g	eotech	nical m	nodel)			3			]									5	3b je	acti	ves	
5	An	alysis o nerical,	of solut empirio	tion co	impone servatio	nts (a nal me	nalytica thods)	nl,		3, 4			]								7	7				
6	Syl sol	utions	and sp (shape	s, size	ations s, locati	lor alt	ernativ	e ons		3.4			]	_	Ste	p i	2:			Fu	inc	tio	nal			~
7	Eva	luation	n (perfo	rmano	e asses	sment	)	-	-	5			1.						rec	juir	en	ien	ts	and		
8	Op	timizati	ion (pe	forma	nce ass	essme	int)			5			17	6	1	~ ~ ~ ~	~~~			co	nst	rai	ints			Î
9	Re	comme	ndatio	n						6				ka-		~ ~ ~ ~		-								4
10	Imp	elemen	tation (	efficier	nt excav	ration,	and m	onitorir	ng)	6			<u>'</u> ا	$\bigcirc$												
	1	1	1							1		1	1	7								-	1	1		-
				~~~											D	esi	an	Pri	nci	ple	1	C	lari	ity	of	-
															d	-		h i	00	-ive			4	1		
															ue c	531		J	ec			unc	1.			
							~~~~	~~~		~~~	~~~		~~~		tu	inc	tiol	nal	re	qui	rei	nei	nts	•		

Step 1:	Statement of the problem			Bieniawski (1993
	performance		2	Design Principle 1: Clarity
Ψ	objectives			of design objectives and
			5	functional requirements.
Step 2:	Functional requirements and constraints	M		
	design variables 8 design issues	<b>k</b>		
				Design Principle 2: Minimum
Step 3:	Collection of information		$\Rightarrow$	uncertainty of geological
	geological charact	erizatio	n,	conditions.
	rock mass proper	ties, in	situ	
	stresses, grounaw	ater, e	TC.	
Step 4:	Concept formulation		~	
	design variables o		2	Design Principle 3:
	design issues			Simplicity of design
			57	components
step 5:	Analysis of solution	TUE	-V	(e.g. geotechnical model).
~~~~~~	components	~~~~		

Step 5:	Analysis of solution components		Design Principle 3: Simplicity of design
	observational, ana empirical, numerica	lytical, al	components.
Step 6:	Synthesis and specification for alternative solutions		Design Principle 4: State of the art practice.
	shapes & sizes of rock reinforcemen associated safety	excavations, t options and factors	
Ster	0 7: Step 8:		Design Principle 5: Optimization of design
pe	formance sessment consideration of me engineering aspect	an-rock s (ventilation,	analysis results, monitoring, etc.).
Step 9	Recommendation - feasibility study		<u>Design Principle 6</u> : Constructability (can the
learned Step 1	O: Implementation		design be implemented safely and efficiently).
	efficient excavation monitoring	on &	Dieniuwski (1293)

Lea	<u>:t</u>	ur	۰e		Re	f	er	er	nc	es					~~~~												•~~~
aach		GR	۶	Ch	nic	tion	T	F (2	003	0	Dali	abili	tv /	and	Sta	tict	ice	in	500	e ch	nic		noir	000	ino	\ / /i	av
hiche	ste	r.		CI	1 13	iun	'	. (5		<i>.</i>	NC III		'y (and	510		103		200		mic		iigii	CEI	mg.		cy
ienia	vsk	1	ZΤ	. (1	99	3).	De	sian	me	etho	dol	oav	fo	R	ock	Fn	aine	erii	na:	Prir	cip	es	and	Pr	act	ce.	Ir
ompr	ehe	nsiv	ve	Roc	kЕ	ngir	ieer	ing:	Prir	icipi	les,	Pra	tic	e å i	Proj	ect	\$. P	ergo	mor	Pr	ess,	Оx	ford	, 2	77	9-79	93.
Jüzgü	1,1	ISB	8	La	cas	se,	S	200	5).	Vu	ner	abil	ty i	and	acc	ept	able	ris	k ir	in	egr	ate	d ri	sk d	sse	ssm	ent
rame	vor	k. I	n İ	and	dslie	de I	Risk	Mar	age	mer	it. A	.A.	Ball	emo	a: Le	eide	n, p	p. 5	05-	515							
lores	G	, k	ar	zulo	ovic	, A	8	Bro	wn,	ET	(2	004).	Curr	ent	pr	acti	ices	and	d ti	enc	is i	n co	ive	min	ing.	١
NassN	lin .	200	4,	Pro	cee	din	gs, S	Sant	iago	5. N	line	ria (hile	ena:	Sar	itia	<u>1</u> 0, p	op. 8	3-9	0.							
Norge	nst	ern	. 1	NR.	(19	95)	T.	he r	ole	٥f	ana	lysis	in	the	ev	alua	tior	n of	slo	pe	stak	ilit	y. I	n Pi	осе	ediı	igs
bixth	Int	ern	ati	ona	I Sy	mp	osiu	m or	1 La	nds	lide.	s, Cl	nris	tchı	irch	. A .	A.B	Balke	ema	Ro	tter	dan	1, pp	o. 16	15-	1629	Э.
Aoss,	A,	Di	ac	hen	ko,	s	Å٦	owr	sen	d ,	P (2	200	5).	Inte	erac	tio	n be	etwe	en	the	Ы	ck	cav	e a	nd	the	pit
lopes 84	at	Palo	JDC	ora	min	ie. J	our	nal (ot I	he	501	ith i	Afri	can	Ins	titu	ite (OT N	Ainii	1g a	nd I	Net	allui	'9Y	10) : 4	79.
									-	~		- -															
XCavo	ron itio	1, / ns	A Tu	a c nne	этш Ilina	e , 2 &	н (Und	200 erai). our	d S	bac	i de e Te	nav chn	iour	an v: 2	a r 2(4	оск) З	eng 63-	376	erin	gт	0015	то	r ur	aer	gro	unc
				ico		T 2			A (200	2)	Sub	cid	nco	D	fin	tion	, f			. c.	vin		nac	Di	т	nto
echni	ical	sei	rvi	ces	, 59	pp		55,	~ (200	э).	JUL	Side	ence	-De	51-111	HUI	51	01 0	SIDE	K ()	14111	J M	mes	~ R 1	9~~F1	me
	1	~		~~~~		s	1																		Ċ	2~~	
~~~	-			~~~~	~~~	1	1~~~		~~~						~~~			1~~~								~~~	
	~	~	~~^	~~~~	~~~		1~~~		~~~~						~~~~												
																		A 2 2 2				8 G S S	8 A A A A	8 A A A			<u></u>

~~~~																										
Villen	perg,	H		oew	, s	, Е	ber	har	dt,	Ε,	Eve	ans,	KF	, 5	Spill	man	n,	Т,	Hei	nck	е,	В,	Μαι	rer	, н	8
∂reen, Randa	ISW	(20 170	uoj rlar	. ти	Par		siru	Tn	re (terr	ina Ial	aet stri	orn Icti	re	fro	та m	n ur nte	ara	ple	oe		ical	an	k n d c	iass	ad hvs	
nvesti	gatio	ns. I	Eng	inee	ring	Ge	olog	y 10)1 (1	-2):	1-3	2.			···		g. <u> </u>		90				۳ ×	p	.,.	
~~~~		~~~~		~~~~	~~~~	~~~	~~~~				~~~~		~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~		~~~~	~~~~	-
		~~~~	~~~	~~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~~	~~~~	~~~
~~~~~		~~~~	~~~	~~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~		~~~~	~~~~	
		~~~~	~~~	~~~~	~~~~	~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~~	~~~~	
															~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~		~~~~	~~~~	
																								~~~		
				~~~~					~~~~	~~~~		~~~~									~~~~	~~~~		~~~		1
~~~~	~~~~	~~~	~~~	~~~~	~~~	~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~~	~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~~	~~
		~~~~	~~~	~~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~~	
			~~~	~~~~		~~~															~~~	~~~		~~~		
	~ ~ ~ ~ ~ ~	~~~~					~~~~								~~~~	~~~~								~~~		
~~~		~~~~	~~~	~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~	1