

	Analysis Method	Critical Parameters	Advantages	Limitations
	Continuum	Representative slope	Allows for material	Users must be well trained,
T	Modelling (e.g. finite-	geometry; constitutive criteria (e.g. elastic,	deformation and failure (factor of safety concepts	experienced and observe good modelling practice; need to be
	element, finite- difference)	elasto-plastic, creep, etc.); groundwater characteristics; shear strength of surfaces; in	incorporated); can model complex behaviour and mechanisms; 3-D capabilities; can model affects of pore	aware of model and software limitations (e.g. boundary effects, meshing errors, hardware memory and time
		situ stress state.	pressures, creep deformation and/or dynamic loading; able to assess effects of parameter	restrictions); availability of input data generally poor; required input parameters not
			variations; computer hardware advances allow complex	routinely measured; inability to model effects of highly
			models to be solved with reasonable run times.	jointed rock; can be difficult to perform sensitivity analysis due to run time constraints.
	Discontinuum	Representative slope and	Allows for block deformation	As above, user required to
	Modelling	discontinuity geometry;	and movement of blocks	observe good modelling
	(e.g. distinct- element, discrete- element)	intact constitutive criteria; discontinuity stiffness and shear strength:	relative to each other; can model complex behaviour and mechanisms (combined	practice; general limitations similar to those listed above; need to be aware of scale
		groundwater characteristics; in situ	material and discontinuity behaviour coupled with hydro-	effects; need to simulate representative discontinuity
		stress state.	analysis); able to assess	etc.); limited data on joint
			on instability.	properties available (e.g. jk _n , jk _s).
				Coppon et al. (1998)

<u> </u>	<u>////</u>			<u>11_</u>		51	110		2		~~~~	~~~·	~~~~	~~~~	~~~~		~~~·	~~~~					
A clas	ss o	f n	ume	eric	al:	te	chr	niq	ues	s c	olle	ect	ive	٤ly	de	sc	rit	bed	a	s c	lisc	re	te
eleme	<u>nt</u> (cod	es p	oro	vide	es	th	e (cap	bab	ili	y	to	re	pre	ese	ent	tł	1e	m¢	otic	on	of
multip	ole,	int	ers	ect	ing	Ь	odi	es	T	hi	s r	eq	uir	es	an	e	ffi	cie	nt	al	gor	itt	nm
for d	ete	ctin	g a	nd	cla	ssi	ify	ing	C	ont	ac	ts											
Nie	tino	+ 6	1.0	+						liei					chi		c			ta	-		
UIS		1-C	leme	erii		se:	s a		xp			for	:-n	iar.		ng	SCI		ie id	10	501	ve	
	de	с ес for	nahl			m		uri nt		eci	IY IN		fo	sy	sie	m	or	r ig	Jia	or,			
	ue		nubi	6 0	Juli	23,			uci	зu	11 6	ue	101	.116		•••							
Dis	con	tinu	ous-	De	for	ma	tio	n -	as	sur	nes	C	ont	act	s t	oet	we	en	de	for	ma	blę	
	bo	dies	are	e th	iem	sel	ves	s si	nal	ler	rig	gid	bo	die	s.							~~~	~~~
Mo	mon	tum	-Fy	cho	nna	_	00	CUM	nes	b	th	~	nte	nct	c 0	nd	bo	dia		ne		~~~	~~~~
	ria	id	with	n m	ome	nt	lim	be	ina	e	ch	and	hed	b	etw	00	n t	wo		nte	ict	ina	~~~
	bo	dies	du	rina	an	in	sta	nto	ne	0115		olli	sion										
					-										~~~~			~~~~	~~~~	~~~~	~~~~		
	1.15			•								~~~~		C -		1		TI		~			
	UD	EC	- U	niv	ers	al	ו <u>ט</u>	SŤI	nc [.]		ier	ne	nŤ	<u>c</u> o	ae	(D	γ γ	TTC	ISC	a)	_		×
														di	sti	nct	-0	ler	nei	nt			
														-									~~~~

JDEC	<u>- Solvi</u>	ng										
Inbalance	d Force:											
During tin	nestennine	the (mbala	ncad	fonce	is d	atorm	inac	for	tha	mod	a l •
this indic	ntes wheth	, me i ner blo	rks in	the	model	are	movir		not	and	niou 1 ie	51,
continuous	slv update	d on th	ie scr	een.	The u	nbala	inced	for	ce is	imp	ortar	nt in
assessing	the state	of the	mode	el for	stati	ic and	alysis	. If	the i	inbo	alance	ed
forces de	crease by	3-4 o	rders	of m	agnitu	ide, 1	then	the	model	is	indic	ating
that the	problem is	movin	g towo	ards a	stab	le eq	uilibr	ium	(i.e.	any	mov	ing -
blocks are	e coming t	o rest)	. If 1	the ur	balan	ced	force	inci	eases	or	rem	ains
the same	then the	model	is suc	aaesti	ina th	at bl	ocks	are	movin	a or	r fail	ling
	,					T				9	- D	-
(i.e. yield	Í).											
(i.e. yield	í)		•							· · · · · ·		
(i.e. yield	Contact Fo	prce										
(i.e. yield	Contact Fo	prce			ec)sten	10000						
(i e. yield	Contact Fo			udi	ec>step initial	10000 L time	step =	2.26	3E-Ø3			
(i e. yield Block Cer Force	(). Contact Fo Update	orce Relative Displac	Contact	ud	ec>step initial beginni	10000 l time ing cyc	step = le -	2.26	3E-03 54 at 6	5-Sep	-04 12:	:55:27
(i e. yield	(). Contact Fo Update	Prce Relative Display	e Contact		ec>step initial beginni cycle 14500	10000 L time ing cyc time 3.281	step = le - un E+01	2.26 136 bal. 2.40	3E-03 54 at f force 3E+04	clocl	-04 12: k time 5:36	:55:27
(i e yield	 Contact Fo Update ntroid Block Moti 	Relative Displace	e Contact		ec>step initial beginni cycle 14500	10000 L time ing cyc 3.281	step = le - un E+01	2.26 136 bal. 2.40	3E-03 54 at 6 force 3E+04	5-Sep clocl 12:55	-04 12: k time 5:36	:55:27
(i e yield	 Contact For Update ntroid Block Moti Update 	Relative Displation	e Contact cements		ec>step initial beginni cycle 14500	10000 L time ing cyc time 3.281	step = le - E+01	2.26 136 bal. 2.40	3E-03 54 at 6 force 2E+04	5-Sep cloc] 12:55	-04 12: k time 5:36	:55:27
(i e. yield Block Cer Force	 Contact For Update Block Moti Update 	rce Relative Displa	e Contact rements		ec>step initial beginn: cycle 14500	10000 L time ing cyc time 3.281	step = le - E+01 un	2.26 136 bal. 2.40	3E-03 54 at f force 3E+04	5-Sep clocl 12:55	-04 12: k time 5:36	:55:27

Lecture References Joggan, JS, Stead, D & Eyre, JM (1998). Evaluation of techniques for quarty slope stability issessment Transactions of the Institution of Mining and Metallurgy (Section B) 107: B139-B147. Jart, RD (1993). An introduction to distinct element modeling for rock engineering. I Comprehensive Rock Engineering: Principles, Practice & Projects. Pergamon Press, Oxford, 2: 245-261. Judson, JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Isevier Science: Oxford. Stead. D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface cool ining Engineering Geology 46(1): 41-61. Stead. D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of comple. ock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. Thuro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW rydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.																											
Coggan, JS, Stead, D & Eyre, JM (1998). Evaluation of techniques for quarry slope stability is seesment. Transactions of the Institution of Mining and Metallurgy (Section B) 107: B139-B147. Hart, RD (1993). An introduction to distinct element modeling for rock engineering. I comprehensive Rock Engineering: Principles, Practice & Projects. Pergamon Press, Oxford, 2: 245-261. Hudson, JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles is every science: Oxford. Istead D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface containing. Engineering Geology 46(1): 41-61. Istead D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of complex ock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. Thuro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	_ec	tι	ir	2	Re	2 f	er	er	IC	es																	
Seessment Transactions of the Institution of Mining and Metallurgy (Section B) 107: B139-B147. Iart, RD (1993). An introduction to distinct element modeling for rock engineering. I omprehensive Rock Engineering: Principles, Practice & Projects. Pergamon Press, Oxford, 2: 245-261: Iudson, JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Isevier Science: Oxford. tead. D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface cod ining Engineering Geology 46(1): 41-61. tead. D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of comple- pock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	oaaan	J	s	Ste	ad.	D	& E	vre	J	M (199	8).	Evo	alua	tion	of	te	chni	aue	s fo	or c	uar	rv :	slop	e s	tabi	ility
art, RD (1993). An introduction to distinct element modeling for rock engineering. I omprehensive Rock Engineering: Principles, Practice & Projects. Pergamon Press, Oxford, 2: 245-261. udson, JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles isevier. Science: Oxford. tead. D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface coc ining Engineering Geology 46(1): 41-61. tead. D. Eberhardt, E & Coggan, JS (2006). Developments in the characterization of complex ock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	sess	ient	Ťı	rans	acti	ions	of	the .	Insi	titu	tion	of I	Mini	ng c	nd i	Met	allu	rgy	(Se	ctio	n B)	10	7: B	139	-B14	17.	
omprehensive Rock Engineering: Principles; Practice & Projects. Pergamon Press, Oxford, 2: 245-261. udson JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Isevier Science: Oxford. tead D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface coc ining Engineering Geology 46(1): 41-61. tead D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of complex ick slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	art,	RD	(1	993).	An	int	rodi	icti	o n	to	dis	tinc	t e	elerr	ent	m	ode	ing	fo	r r	ock	er	igin	eeri	ng.	Ir
udson, JA & Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Isevier Science: Oxford. tead D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface coc ining Engineering Geology 46(1): 41-61. tead D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of complex ock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	ompre	hen	sive	Ro	ck E	ngir	ieer	ing:	Prii	icip	les,	Pra	ctic	e å	Proj	ject	s . Po	ergo	mor	Pro	ess,	Оx	ford	, 2:	24	5-21	61.
Isevier Science: Oxford, tead D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface coc ining Engineering Geology 46(1): 41-61. tead D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of comple. bck slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	udson	J	A &	Ha	rris	on,	JP	(199	97).	. En	gine	erir	ig R	ock	Me	chai	ics	- A	n Ir	tro	duc	tion	to	the	Prin	cipl	es
 tead D & Eberhardt, E (1997). Developments in the analysis of footwall slopes in surface coc ining Engineering Geology 46(1): 41-61. tead D, Eberhardt, E & Coggan, JS (2006). Developments in the characterization of comple- sck slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66. 	Isevier	1.50	iend	ce: (JXti	ord.			~~~		~~~	~~~		~~~~	~~~~		~~~~	~~~					~~~		~~~		
 tead. D. Eberhardt. E & Coggan. JS. (2006). Developments. in the characterization of comple. bock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K. Eberhardt. E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GW ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66. 	tead,	Do	& E	ber	hard	dt,	E (1997). · Δ1	Dev	elop	mer	nts	in t	he	ana	ysis	of	fo	otwo	ill s	lope	s il	1 SL	rfa	ce 1	oa
 Tread D, Ebernardi, E a Coggan, JS. (2006). Developments in the characterization of complete ock slope deformation and failure using numerical modelling techniques. Engineering Geology 83(1-3) 17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GV ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66. 	tring.	City	TL.	- 11	,00				. 11	-01												<u>.</u>	 		6		
17-235. huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GV ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	reaa ock slo	D, pe	def	ern orm	atio	n ar	nd f	ailur	jan je u	, J: Isinc	> (4 nui	ner	ical	moo	delli	ng 1	nts Tech	in T nigu	ne ies.	cna Eng	ine	eru	a Ge	on c olo	от с ау 8	om 3 (1	-3)
huro, K, Eberhardt, E & Gasparini, M (2004). Deep seated creep and its influence on a 1.5 GV ydroelectric power plant in the Himalayas. Felsbau 22(2): 60-66.	17-23	5.							~~~			~~~~				1				- 1			~~~		1	~~~	1
ydroelectric power plant in the Himdlayas. Felsbau 22(2): 60-66.	huro,	K,	Ebe	rha	rdt	, E	& G	asp	arin	ni, A	۸ (2	004	4) .	Dee	p se	ate	d c	reel	o ar	d it	s ii	flu	ence	or	a	.5	ĠŴ
	ydroel	ecti	ric	pow	er p	lant	in t	he f	lim	alay	as. I	Fels	bau	22(2):	60-1	66.	~~~~					~~~		~~~~	~~~	
									~~~										~~~	~~~			~~~~			~~~	
									~~~										~~~	~~~			~~~~			~~~	
									~~~														~~~~		 (		
																									-6	7~	
									~~~										~~~	~~~			~~~			~~~	1~~~
									~~~														~~~				4~~~
			<u> </u>	22		45	-	-	مانه	Eh.		-		PC	6			Ene					EC	ec	42	2 12	01