

	<u>n</u>
Phenomenological Approach	Mechanistic Approach
Relies on generalization of	Derives its theories from
large scale observations.	elements of fracture at the
	microscopic scale.
Theories include:	
	I heories include:
Maximum Stress theory	Griffith Crack theory
··· Tresca theory	
Coulomb theory	Mechanics (LFFM)
• Mohn-Coulomb Failung chitanian	
• Hoek-Brown Tailure criterion	

Lecture	Referenc	es			
<mark>Bieniawski, ZT (</mark> : International Jou 406	1 967) . Mechanism Irnal of Rock Mect	of brittle roc anics and Min	k fracture: Par ing Sciences &	t I - Theory of the Geomechanical Abs	fracture process. tracts 4 (4): 395-
Brace, WF & Bo Geophysical Rese	mbolakis, EG (196 arch, 68 (12): 3709-	33). A note o 3713.	n brittle crack	k growth in compre	ssion. Journal of
Eberhardt, E, S elliptical crack in Mechanics 59(2):	tead, D, Stimpson itiation and propa 103-115	, B & Lajtai , pation in unia>	EZ (1998a) . T kial and triaxia	The effect of neigh I stress fields. Eng	bouring cracks on ineering Fracture
Eberhardt, E, S propagation thres	Stead, D, Stimps sholds in brittle roc	on, B & Rea k. Canadian Ge	l d, RS (1998 zotechnical Jou	5). Identifying cro Irnal 35 (2): 222-233	ick initiation and
Eberhardt, E, S in rock during un 361–380.	tead, D & Stimpse iaxial loading. Inte	n, B (1999) . ernational Jou	Quantifying pr rnal of Rock M	e-peak progressive Nechanics and Minin	fracture-damage g Sciences 36(3):
Goodman, RE (19	189) . Introduction	to Rock Mecho	anics. John Wile	ey & Sons: New Yorl	κ.
<mark>Griffith, AA (19</mark> Royal Society of I	20) . The phenome London, Series A, N	na of rupture Nathematical a	and flow in soli nd Physical Sci	ids. Philosophical Ti ence s, 221 (587): 16	ansactions of the 3-198.
<mark>Griffith, AA (19</mark> Applied Mechanic	24) . The theory o s, Delft, pp. 55-63	f rupture. In	Proceedings of	the First Internat	ional Congress for
Harrison, JP & Examples.Elsevie	Hudson, JA (200 r Science: Oxford.	0). Engineerii	ng Rock Mecho	anics - Part 2: Illi	istrative Worked
→	of 44 Erik	Eberhardt -	UBC Geologica	l Engineering	EOSC 433 (2017

	~~	~		~~~			-	~~~	~~~~	~~~~	~~~	~~~~	~~~	~~~		~~~	~~~~	~~~~	~~~	~~~	~~~~	~~~~	~~~~	~~~	~~~		~~~	~ ~ ~
Le	20	:1	'U	re	2	Re	210	er	er	1C	es																	~~-
loel	к,	E	8	В	row	n,	ЕΤ	(19	80)	.ι	Inde	ergr	oun	d E	xco	vati	ons	in	Ro	ck.	Ins	titu	itio	n o	fΛ	Ainir	ng (anc
Nete	all	urg	gy:	Lor	dor	i,				~~~~	~~~~					~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~~	~~~~		~~~
ingr	af	fe	а,	AR	(19	87). T	heo	ry o	f cr	ack	ini	tiat	ion	and	pro	page	atio	n in	roc	k. I	n F	raci	ture	Me	cha	nics	0
Rock	c. 7	٩ça	ade	mic	Pro	ess	Inc.	Lto	i to	ondo	n, p	р. 7	1-1	10.	~~~				~~~~	~~~~				~~~	~~~		~~~~	~~~
ajt.	ai	E	Z	(19	71). 7	th	eor	etic	al c	ind	ext	berii	men	tal	eva	luat	ion	of	the	Gr	iffi	th	the	ry	of	brit	tt
rac	tu	re.	Т	ecto	nop	hys	ics,	11:	129	-15	6.																	~~~
ais	er	. F	ж	Đi	ede	rich	5	MS	M	arti	n f	5.6	Shar	ne	J	8 6	iteir	ner	w	(20	000	1	Inde	ror	ound	d w	orke	~+
nard	ī	roo	ck	tu	nnel	lling	an	di	ninii	ng.	Ín	Ge	oEn	g20	00,	Me	elbo	urne	2	Tech	nor	nic	Put	list	ing	Co	mpo	iny
.anc	as	te	r,	op. 8	341-	926	ä.																					
۸ar	tin	, (CD	, K	aise	r, F	K 8	M	Cre	ath	, D	R (1	199	9).	Hoe	k-B	row	n po	iran	nete	rs	for	pre	dict	ing	the	de	pt
of b	rít	tle	e fo	iilür	e a	roui	nd ti	unne	els. (Cano	idia	n Ge	eote	chr	ical	J οι	irna	136	(1):	136	-15			~~~	~~~~	~~~	~~~~	~~~
Vhy	rat	ŧ,	JI	(, E	lak	e, 1	W 8	w	illia	ms,	тJ	(19	997). C	ass	fice	itior	n of	lar	ge .	seis	mic	eve	nts	at	the	Lu	ck
rid	ay	Ŵ	ine	. T	ran	sact	ions	of	the	: In	stit	utic	n o	f N	inin	g ai	nd A	Neta	llur	<i>g</i> γ,	Sec	tio	1 A	Mi	ning	i In	dust	try
.06:	A	14	8-,	416	2.			~~~			~~~									~~~~				~~~	~~~		~~~	~~~
	~~~										~~~																	
	~~~																										~~~~	
																										C		
																										9	_	
~~~	~ ~ ~			~~~	~~~	1				~~~~	~~~						~~~~	~~~~	~~~~	~~~~				~~~	~~~~		~~~	-
~~~	~~~	~		~~~	~~~					~~~	~~~	~~~				~~~	~~~	~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~	~~~	~~~^	~~
									_										_					_				
\rightarrow	/		\leftarrow		40	of	44		Е	rik	Ebe	rha	rdt.	- L	BC	Geo	logi	cal	Eng	inee	rin	3		EC	SC	433	3 (2	01