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Geological Engineering Practice I - Rock Engineering

Lecture 2: Site
Investigation &
Data Confidence
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Site Investigation & Monitoring

Geotechnical site investigation
and monitoring are fundamental
to rock engineering projects.
Their use extends from
prefeasibility through to
operations and decommissioning.

Their purpose is multifold,
serving both investigative and
monitoring functions that are in
part a necessity to ensure the
economic feasibility of the
project and part due diligence
to ensure safe operations.
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'Role of Site Investigation & Monitoring

L InLes‘hgaﬂon I N U TS O O A
* To provide an understanding of the ground condmons for
prefeasibility and design purposes.
* To provide input values for design calculations.
~ *To check for changing ground conditions as the project
—— develops, or advance/progress to greater depths.

~ ' Monitoring:
~ * To assess and verify the performance of the design.
" * To calibrate models and constrain design calculations.
*To provnde a warning of a change in ground behaviour, thus
enabling intervention to improve safety or to limit damage
through a design change or remediation measure.
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Site Investigation - Boreholes
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Site Investigation - Boreholes
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| Gotthard Base-Tunnel (Switzerland)

Cost = $15+ billion
Time to build = 17 years
Length = 57.5 km
Advance to the sa - S€drun shaft = 800 m
/" appoc45km | Excavated material = 24 million tonnes
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Sugar-grained dolomites
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i Sugar-grained dolomites
| (granular & cohesionless)
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Gotthard Massif [ Comicules, Gipsum
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"""""" sugar-grained Dolomite

| Considered the
| greatest geological
| risk to the feasibility

| and success of the .

| tunnel project, the

| TBM passed safely G

| through the Piora

| zone without any
problems.
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| The total delay for passing
| through these faults along
1| this section ... two years.

| Budget overrun... more than
d | 200%.

Ehrbar (2008)
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‘Deep Tunnels - Geological Uncertainty
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Uncertainty in 6Ground Characterization
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Managing Geotechnical Uncertainty

<4—— Mean shear strength ——» |
1 1

«— Mean —» |
driving | j
stress

Density —»

Data collection provides
us with a means to
manage uncertainty, but
not to eliminate it!

Operations (Measured)
Observed/Monitored/Back- Analyzed

Value —

Feasibility (Indicated/Measured)
Quantitative/Monitored

Pre-Feasibility (Inferred)
Qualitative/Empirical

Hoek (1991)
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Influence of Geological Factors

In the context of the mechanics problem, we should consider the
material and the forces involved. As such, five primary geological
factors can be viewed as influencing a rock mass.

—> We have the intact rock which is
itself divided by discontinuities
to form the rock mass structure.

— We find then the rock is already
subjected to an in situ stress.

— Superimposed on this are the
influence of pore fluid/water
flow and time.

With all these factors, the geological history has played its part,
altering the rock and the applied forces.
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Laboratory Testing of Rock/Soil Behaviour

Uniaxial Compressive Strength (UCS), or |°  Duete
peak strength, is the maximum stress .

that the rock can sustain. After it is \
exceeded, the rock may still have some \
load-carrying capacity, or residual |
strength.

Hudson & Harrison (1997)

high stiffness
high strength
very brittle

med. stiffness
med. strength
med. brittleness

low stiffness
low strength
ductile

e.g. Granite

e.g. Limestone

e.g. Shale
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Understanding Rock Behaviour

Parameter

Value (MPa)

Number of Tests
Min. Peak Strength, oycs
Max. Peak Strength, oycs
Avg. Peak Strength, oy¢s

20

183.0
2311

206.9
(+13.5)

T T

SR =T NV -V
Sehmid Hammer Test Uniaxial Triaxial Shear | Direct Shear | Young's Poission's
. Sample Conpression Strength strength modulus Ratio
Location No Geology Mean Hardness] Equilant strength|  oci C T | o E o
Mo, MPa MPa MPa MPa 10*MPa
Count 59 5% 26 12 12 12 12 22 22
Maximum 56 72 201| 3964| as20] o0e0| 4000 15.30 0676
Minmum 24 17 11 210| 28.3&0 0.25| 27.00 117 0.023
Mean 44 53 76 19.45| 3850 0.39) 35.08 5.37 0.284
Standard Deviation 7 13 48 12.39 442 012 3.73 3.35 0.159
Standard Error 089 275 52.939 1278 1.63 0.00| 118 0.51 0.001
Standard Ervor I I 28] 0] 098] 043 0.00
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Rock/Soil Behaviour - Scale Effects

Several
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‘Rock Mass Behaviour
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Reporting - Distribution and Variability
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‘Averaging' of data that can lead to a
misrepresentation of important geological features,
particularly major structures.
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Hypothesized |
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Geotechnical Data Collection

> Main Objectives
*—Provide-input parameters for geotechnical design calculations
- Optimize existing operations/construction
*  Limit/manage uncertainty

> Compatibility with the stage of the project
e Inferred, Probable, Proven

> Practicality
* Data collection in the context of the engineering design

*  Underground design often has to be completed prior to underground
exposure (based on core only)

* Degree of certainty has to be considered

*__Sensitivities of parameters-and-consequences must be tested

* Integral part of the geological-investigation

*--Communication between disciplines-(geology, engineering, miners)
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General Data Requirements

Data should be measured and recorded in systematic
ways using standardized procedures. Much time and
effort can be wasted by collecting data which may be
irrelevant or inadequate. The nature of the data will
also become more specialized as measurements
transition from surface boreholes to
excavation/construction.

The quality of the data is critical to the reliability of
the interpretation...

... POOR QUALITY OR INACCURATE DATA CAN BE
MISLEADING AND IS WORSE THAN NO DATA

—[J<— 280r64 Erik Eberhardt - UBC Geological Engineering EOSC 433 (2017)
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General Data Requirements - Standardization

DISCONTINUITY SURVEY DATA SHEET

e
NATURE AND ORSENTATION OF DESCONTIVNTY
. [
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Discontinuity Data Collection

Filling

Discontinuity set

Hudson & Harrison (1997)
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Spacing & Persistence

— [ 310f64 Erik Eberhardt - UBC Geological Engineering EOSC 433 (2017)

Remote Sensing - Photogrammetry & LiDAR

— Advantage: able to provide

data for remote and
inaccessible areas where
safety concerns often
preclude conventional

mapping.

—> Disadvantage: suffer

measurement bias (e.g.,
orientation, truncation,
censoring), which must be
fully considered during
processing, analysis, and
interpretation.
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Remote Sensing - Laser Scanning (LiDAR)

5 Mesh
Mesh
with

patches
Strouth & Eberhardt (2006)
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Remote Sensing - Laser Scanning (LiDAR)

potential
orientation bias

&

] -

- P discontinies
L

] Strouth & Eberhardt (2009) *

L
E
%
A
Sturzenegger & Stead (2009a)

Scale bias (or observation scale)

Effect on discontinuty onentation measurenients, Effect on d v p

Truncation of non-persistent discontinuity sets Truncation of non-persistent discontimuties,

resulting in orientation bias small compared to ground point spacing

Shift in discontinuity orientation, because ‘Overestimation of the length of extremely persistent features actually
of smoothing of step-path geometries composed of a combination of both smaller discontinuities and intact

rock fracture, This results from the smoothing of the step-path
geometries at low resolution

Sturzenegger & Stead (2009b)

— [« 340r64 Erik Eberhardt - UBC Geological Engineering EOSC 433 (2017)

17



Gaich et al. (2006)

EOSC 433 (2017)

R

| 3-D photomodel of
| Palabora open pit in

| South Africa (f = 20 mm
| lens), superimposed with
a bench-scale photomodel
| (f = 400 mm lens).

-~ Steadetal (2009)




DISCONTINUITY PARAMETERS
Discrete positions (X,Y,Z) [m]
Distances, lengths [m]
Areas [m?]
Dip / Dip directions [°/°]
Trace orientations [°/°]
| Rock bridges
—\ Spacing, persistence

Gachetal (2006)
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Acoustic. | Provides a continuous  Requires a stable

~provides high accuracy boreholeto
,,,,,, and confidence in data;  operate.

~ Optical ~ Provides a continuous  Requires astable
~ Televiewer record of borehole wall borehole; requires
R (3-D virtual core); - air or clear water
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* To provide an understanding of the ground conditions, for
prefeasibility and design purposes.

* To provide input values for design calculations.

% To check for changing ground conditions as the project

—— develops, or advance/progress to greater depths.

M
~ *To assess and verify the performance of the design.

~ * To calibrate models and constrain design calculations.
+To provnde a warning of a change in ground behaviour, thus
enabling intervention to improve safety or to limit damage
through a design change or remediation measure. {
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i Geotechnical pr‘ojecTs of‘ren presem‘ the ultimate measurement
| challenge, in part because of their initial lack of definition and the
sheer scale of the problem; often a number of instrumentation types

is r‘equnr‘ed

The ultimate goal is to
~select the most sensitive fs
[ measurement parameters §
~ with respect to the '
~ project objectives.

- However, because of

~ physical limitations and

~ economic constraints, all

i parame‘rers cannot be
“measured with equal ease
and success. '

, ,‘The use of geofechmcal instrumentation is not merely the selection
~ of instruments but a comprehensive step-by-step engineering ,
_ process beginning with a definition of the objective and ending with
N lmplemen'rahon of the data.

| Engmeermg obJecﬂves Typlcally
_encountered in soil and rock engineering

~ projects have led to the design and

~ commercial marketing of numerous
_instrument types, measuring for example:

" - total stress in backfill and
stress change in rock

decreasing |
reliability

22



Instrumentation, Monitoring & Design

_ The required versafility in how instruments can be deployed (on
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- Accuracy - the degree of '
' TCOT?CTNZSST with respect to the
- true value, usually expressed as a
~ % number or percentage.

: TPrecision = 1’he repeafab[hty of """ Not Accurate Accurate

. | { i Not Precise Not Precise
sim

1o ?imeam usually reflected in
~ the

number of significant figures

~ quoted for avalue.

Not Aceurate Anvur.atl-

Precise Precise
.......... SNBSS S S NN U S
Error-Prone & Doubtful Repeatable & Reproducible - . - - - . . . . . . . . . . .
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ability of

oani ;
- properly under harsh
~ conditions to ensure data

uracy and continuity are

-
:_ data scatter due to error
. in programme sub-routine ~
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—
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~Severinetal (2011) |

"if you do not know what you are looking for, 'you/ =
~are not likely to find much of value” L

R. Glossop, 8t Rankine Lecture, 1968
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Instrumentation Planning

1999 Eibelschrofen rockfall, Austria

Post-failure monitoring of the slope
included the installation of a fibre-optic

extensometers capable of measuring pm-
: ﬁle displacements. Was this useful?

— [« 510r64 Erik Eberhardt - UBC Geological Engineering EOSC 433 (2017)

Point versus Area Measurements

Monitoring systems have
traditionally involved point
measurements, requiring
movements and deformations
between points to be
extrapolated. This may result in:

i) [the boundaries of areas with high
displacement rates to be poorly
defined,

ii)__smaller_scale _structurally
controlled movements such as
wedge or planar sliding to be
overlooked, or

iii)- the mechanics-behind-larger-and
more complex pit-scale failures to
be misinterpreted.

— [« 520r64 Erik Eberhardt - UBC Geological Engineering EOSC 433 (2017)
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SMAELL WEDGE FAILURE

Moving Prism |
'ARGE'WEDGE FAILURE

4

o \ Stable Prisms

SMALECIRCULAR FAILURE

LARGE'CIRCULAR FAILURE
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- Terrestrial radar technology has -
{ revolutionized rock slope hazard
~ monitoring, providing critical
~ data across broad areas in real
@ time to manage instabilities:

eformation precision:
~ Sub-millimetre |
~+ Fast scan time: Minutes,
- with several minute repeat
fr'equency -t :
Alarming: Real- hme
ile platform: Fast setup

' Source: GroundProbe
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directions)

—>-. — 550f 64 Erik Eberhardt - UBC Geological Engineering  EOSC 433 (2017)

Surface Defor'mcmon Monitoring - Radar
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ing: Radar

= Point 1
= Point 2
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-+ system failure in radar; pit superintendent

announced and pit superintendent is notified }o =
evacuate.

- developing situation that geotech department
should provide guidance-on.

notified that radar is unavailable and geotech

29
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