

<u>Role</u>	of	Si	te	Inv	<u>est</u>	iga [.]	tior	<u>1 &</u>	Ma	<u>onit</u>	orin	1		
Inve	stige	ation	•											
• T	o pr	ovide	e an	und	erst	andir	ng of	th	e gro	ound	condit	ions,	for	
pr	refe	asibi	lity	and	desi	gn p	urpo	ses.						
• T	o pr	ovide	e inj	put v	alue	s for	• des	sign	calci	ulatio	ns.			
• T	o ch	eck-	for	char	nging	grou	und a	cond	lition	s as	the p	rojec	: t	
de	evelo	ops,	or d	adva	nce/	progr	ress	to g	reat	ter d	epths			
<u>Moni</u> • T	torii o as	n <u>q</u> : sess	anc	l ver	rify 1	rhe p	perfo	ormo	ince	of th	ne des	sign.		
• T	o ca	libro	ite I	mode	els ar	nd co	onstr	ain	desig	gn ca	lculat	ions.		
• T	o pr	ovide	a a	warn	ing a	of a	char	ige	in gr	ound	beha	viour,	thu	s
er	nabli	ng ii	nter	vent	ion t	o im	prov	e so	fety	or t	o limi	t dan	nage	
tł	rou	gh a	des	sign	chan	ge oi	r ren	nedi	atior	n mea	isure.			
	~ ~ ~ ~ ~ ~	-												
→//←		? of 5	6	Er	ik Ebe	rhard	t - UB	C Geo	logical	Engine	ering	EC	SC 4 3	3 (20

Planning	and Design – Sensor Lypes
	Eberhardt & Stead (201
Sensor Type	Operation Principles
LVDT	Linear Variable Differential Transformers (LVDT) consist of a movable magnetic
$\neg \neg$	applied and a voltage is induced in each secondary coil. When the core moves off
	center, the output voltage increases linearly in magnitude LVDTs are commonly used in instruments to measure displacements
Vibrating wire	Involves a high tensile steel wire fixed at both ends and tensioned so that it is
	free to vibrate at its natural frequency. The wire is magnetically plucked by an
	other the tension in the wire, and therefore measured frequency, changes.
	Vibrating wire transducers are commonly used in pressure cells, piezometers and
Accelerometers	Consist of a damped mass suspended in a magnetic field; under the influence of
	external accelerations (or motion) the mass deflects from its neutral position and
	the deflection measured. Accelerometers are commonly used in tiltmeters and inclinometers.
Fiber optics	Light is emitted into and confined to a glass fiber core and propagates along the
	length of the fiber. Any disturbance of the fiber alters the guided light which ca then be related to the magnitude of the disturbing influence. Fiber optics is
	finding increased use in piezometers and deformation monitoring instruments.
MEMS	Micro-Electrical Mechanical Systems (MEMS) are small integrated devices that
	combine electrical and mechanical components on a sub-micrometer to sub-
	millimeter scale. This allows for transducers, for example accelerometers, that a
	fraction of the cost of conventional transducers.

1. Account for factors that may	
influence measured data.	
Details of each instrument installation	Instrument Environments
should be recorded, because local or	 Large deformations—often shearing deformations High pressures—both solids and fluids
measured variables.	 Corrosive—chemical (groundwater, grouts, con- crete additives, bacteria) and electrolytic (electroly
2 Establish procedures for ensuring reading correctness.	 sis of dissimilar materials, stray electrical currents; 4. Temperature extremes—subfreezing to 100°F+ in the sun (temperature can be higher in certain instances, such as nuclear waste storage) 5. Shock—blasting, construction activities, rough har dling during transportation to and from site
When reading an instrument, one should be able to answer the question: Is the instrument functioning correctly? The answer can sometimes be provided by visual observations, duplication of	 6. Vandalism, destruction by construction equipment fly rock 7. Dust, dirt, mud, rain, chemical precipitates 8. High humidity, flowing or standing water 9. Erratic power supplies (electrical instruments) 10. Loss of accessibility to instruments when covered by rock, soil, shotcrete, and other supports
instruments, data consistency or through	
the use of instruments that internally	

				-	~~~	~~~~	~~~~	~~~	~~~	~~~	~ ~ ~ ~	~~~	~ ~ ~ ~	~~~	~~~	~~~	~~~	~~~		~~~	~~~	~~~	~~~		
Lect	ure	2	Re	<u>:te</u>	er	er	C	es				~~~		~~~	~~~	~~~	~~~			~~~		~~~			
Bonzanigo	, L,	Ebei	rhai	rdt,	E	& L	oew	, s	(20	07	. L	ong	ter	m ii	nves	tigo	itio	n of	a	dee	p-se	ate	d c	reep	in
andslide i	n cry	sta	lline	ro	ck -	Pa	r† 1	Ge	olos	gica	l ar	id h	ydr	ome	cha	nico	l fo	icto	rs c	ont	rolli	ng	the	Car	np
allemagg	a lan	asiic	1e. (anc	aia	n Ge	ote	cnn	icai	JOL	irna	44	(10)	: 11:	9/-J	180						~~~	~~~		
unnicliff	, J (199	3).	Geo	tec	hnic	al I	nst	rum	ento	atio	n fo	r N	loni	tori	ng F	ielo	Pe	rfoi	ma	nce.	Jo	nn I	Nile	γ.
ions: New	Yorl	۲.																							
berhardt	, E	(20	08)	. 1	Twe	nty-	Nin	th	Can	adic	in (Geo	tecł	nic	al (Collo	qui	um:	Th	e r	ole	of	ac	lvan	ce
umerical	meth	ods	and	l ge	ote	chni	cal	fiel	d m	eas	ure	nen	ts i	n ur	ider	sta	ndin	g c	omp	ex	dee	p-s	eate	d r	oc
iope tailu	rem	ecno	nisi	ns. (can	aaia	n 6e	eote	cnn	ical	JOL	irna	/43	(4):	484	+-91	0.								1
berhardt	, E.	S	oilln	ann	, Т	., 1	Mau	rer	н	, V	Ville	enbe	rg,	H.	, L	oew	s	&	Ste	bos	D.	(2	004). ⁻	Th
anda Roc	kslid	e Lo	ibor	ato	ry:	Est	abli	shin	g b	ritt	le o	nd	duc	tile	ins	tabi	lity	me	chai	nism	IS U	sing	nu	mer	ic
A Balke	ana i ma: l	nicr eide	ose n r	smi n 4	CHY 81-	. 1r 487	Pr	ос.,	90	1 11	teri	ατι	onai	Зу	тро	siur	n <i>oi</i>	LO	nas	iiae	5, R	10 0	ie J	ane	ire
	_										~ <u>.</u>														-
bernard1	', E (3nd	à Edi	5te	ad,	D dite	(20	/11) // D	. e	709t	ecn	nico		nsti	rum Min	ento		n. J	n.	SME		inin	g t	ngi	neer	nn
51-572.	(5/ 0	201	101	<i>)</i> . С	une	u D	y ı .	Uu	m	, 3	UCIE	' '	01	•	ng,	ME	um	9)	uı	-^P	oru	101	, •0	• •,	PI
nonklin	тл (107	7)	50	ma	n na	ctic	al .	one	ida	nati	ne	in	tha	nla	nni		f i	field	in	+	mai	tat	on	т
roceeding	as of	the	In	teri	nati	onal	Sv	mpo	siun	n on	Fie	ld	Mea	sure	eme	nts	in I	Rock	< Me	cha	nic		uric	h A	Ā
alkema: F	otte	rdar	n, p	p. 3	-13.	~~~~	- /	ал. Г					~~~							~~~					ŕ.
roase (Þ	e N	ei.	5	(20	008	<u>۸</u>	Aant	ina	an	H m	onit	ori	0 (oal	mi	10	ub	ide	nce	usi	n 0	in.	AD .	an
nSAR. In	61st	Car	adi	an G	eot	ech	nica	I Co	nfe	rend	e, l	dm	onto	n, r	p. 1	127	113	3.				.9			-
																		÷					÷		1.

Lecture Refer	rences		
Glossop, R. (1968). The ri	se of geotechnolog	y and its influence on engi	neering practice. Eighth
Rankine Lecture. Géotechniqu	ue 18 : 105-150.		
Harries, N., Noon, D., Row	vley, K. (2006). Cas	se studies of Slope Stability	Radar used in open cut
mines, In Proc., Stability o	f Rock Slopes in O	pen Pit Mining and Civil En	gineering, Johannesburg,
SALMINI, Symposium Series S	544, pp. 335-342.		
Imrie, AS, Moore, DP & En	ergen, EG (1992).	Performance and maintenance	e of the drainage system
at Downie Slide. In Proceed Balkend Batterdam nr 751-	ings, Sixth Interno 757	ational Symposium on Landsi	ides, Christchurch. A.A.
			4000
The Tudgement in Geotechnics	on and instrumentat	ion, some elementary conside	rations, 1983 postscript. 3. Peck Wiley: New York
pp. 128-130		to, costinut bugue, of hupin	
Severin J Fberhardt F	Leoni L Fortin	5 (2011) Use of around-b	used synthetic operture
radar to investigate the com	plex 3-d kinematics	of a large open pit slope. In	Proceedings, of the 12th
Congress of the Internationa	al Society for Rock M	Mechanics, Beijing, In press.	
Willenberg, H. Loew, S, I	Eberhardt, E, Eva	ns, KF, Spillmann, T, Hei	ncke, B, Maurer, H &
Green, AG (2008a). Interna	al structure and def	formation of an unstable cry	stalline rock mass above
Randa (Switzerland): Part	1 - Internal stru	icture from integrated gec	ological and geophysical
investigations. Engineering de	eology 101(1-2): 1-14	T.	(,
Willenberg, H, Evans, KF, I	Eberhardt, E, Spillr	mann, T & Loew, S (2008b)	. Internal structure and
dimensional deformation patt	erns Engineering Ge	eoloav 101(1-2): 15-32	unuy ruri II - inree-
	Enik Ebonhandt	- LIRC Goological Engineering	EOSC 433 (2017)
	ENK EDEMORAT	- Obc Beological Engineering	EOSC 433 (2017)

Lec	TU	re	2	Ke	:T (2r	er	IC	es				~~~~			~~~~	~~~~		~~~~	~~~	~~~					
Wilson Specia	, SC Rep	å ort	Mil 176	kel s No	sen, itior	PE nal R	(1 ese	9 78 arcl). F h <i>C</i> o	ielc unc	l in il: V	stru Vasł	mer ning	itat ton,	ion. D.C	In ., p	Lan 5. 11	dsli 2-1	des 38.	: A	naly	sis	and	Со	ntro) -
Voa , harac	K-S , teriz	E atio	ert n, n	iard nine	t, I pro	E, I duc	Rabı tion	is , and	B , L In	Vyc SAF	i zm 2. mo	ensl onito	y , prin	A da	s s ta t	tea 0 cc	l, i onsț) (a rair	2 01 and	2) . d co	Int libr	egr ate	atio 3-D	n o nui	f fi ner	elo Ica
nodelli Scienci	ng o es:	fь 3 ,1	lock 66-	cav 178	ving	-ind	uce	d si	ibsi	den	ce.	Inte	erno	tior	nal (Jour	rnal	of	Roc	k A	Лес	hani	cs c	ind	Mir	ing
										~~~~		~~~~				~~~~				~~~			~~~~	~~~~	~~~~	~~~
																~~~~				~~~~			~~~~			~~-
																~~~~										
										~~~~		~~~~								~~~~			~~~~	~~~~	~~~~	
																~~~~				~~~~						~~~
																								~~~~		~~-
					~~~																				<del>7</del>	~~-
									 	~~~~		~~~~	 										~~~~	~~~~		~~~