

Discontinuity Mapping - Remote Sensing

3-D laser imaging is an emerging tool for discontinuity mapping. Acquisition is performed at a safe distance, including for inaccessible areas. Millions of high accuracy 3D data points are acquired in Cartesian space, and processed efficiently by automatic algorithms, leading to robust estimates of joint dip and dip direction.
$\longrightarrow \quad$ Erik Eberhardt-UBC Geological Engineering \quad EOSC 433

Discontinuity Mapping

			Wyllie \& Mah (2004)
$\rightarrow \square$ of 18	Erik Eberhardt - UBC Geological Engineering	EOSC 433	

Stereographic Projection

Stereographic projection allows 3-D orientation data to be represented and analyzed in 2-D. This projection consists of a reference sphere in which its equatorial plane is horizontal, and its orientation fixed relative to north. The equatorial projection is the one generally favoured for plotting and analyzing discontinuity data.

Stereographic Projection

Equal-area stereonets are used in structural geology because they present no statistical bias when large numbers of data are plotted. On the equal-area net area is preserved so, for example, each 2 degrees polygon on the net has the same area.

In structural geology the stereonet is assumed to be a lowerhemisphere projection since all structural elements are defined to be inclined below the horizontal.

Stereographic Projection

For a plane (e.g. a discontinuity surface), its intersection with the lower half of the reference sphere defines a unique line on the stereonet (in the shape of a circular arc called a "great circle". To plot the great circle, the dip direction and dip must be known.

Wyllie \& Mah (2004)
$\rightarrow 7$ of $18 \quad$ Erik Eberhardt-UBC Geological Engineering \quad EOSC 433

Stereonets: Plotting a Plane (Dip Direction)

Intersecting Planes

When two planes intersect they define a line, which is common to both planes. The trend and plunge of this line can be read directly off the stereonet.

Stereonets: Plotting a Pole

The pole (or normal vector) of a plane allows the plane to be represented on the stereonet as a single point. Pole plots are a convenient way to examine the orientation of a large number of discontinuities, such as that measured during a discontinuity scanline survey.

Stereonets: Plotting a Pole

Stereonets: YouTube

Check out all of the exhilarating stereonet action on YouTube:

Setting up a stereonet:

$h t t p: / / w w w . y o u t u b e . c o m / w a t c h ? v=k C v q S s g y C S 8$

Plotting a plane:

http://www.youtube.com/watch?v=BBJndEjCINw
Plotting a pole:
$h t t p: / /$ www.youtube.com/watch? $\mathrm{v}=\mathrm{xspWJKDQVYw}$

Lecture References

Hudson, JA \& Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Elsevier Science: Oxford.

Mah, J, Samson, C, McKinnon, SD \& Thibodeau, D (2013). 3D laser imaging for surface roughness analysis. International Journal of Rock Mechanics \& Mining Sciences 58: 111-117
Priest, SD (1985). Hemispherical Projection Methods in Rock Mechanics. George Allen \& Unwin: London.

Wyllie, DC \& Mah, CW (2004). Rock Slope Engineering (4 ${ }^{\text {th }}$ edition). Spon Press: London.

