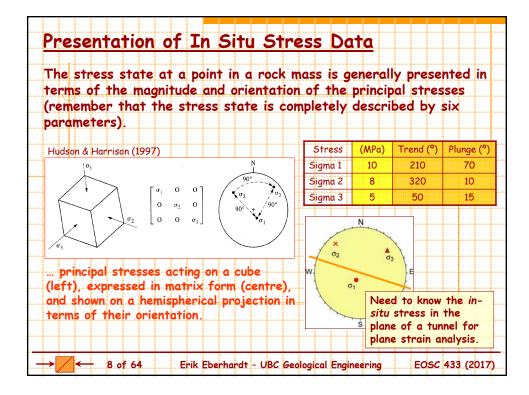
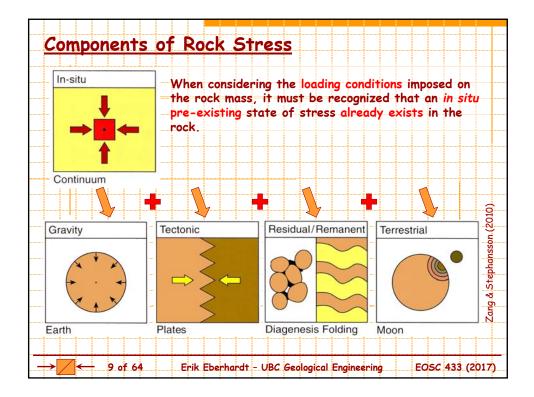
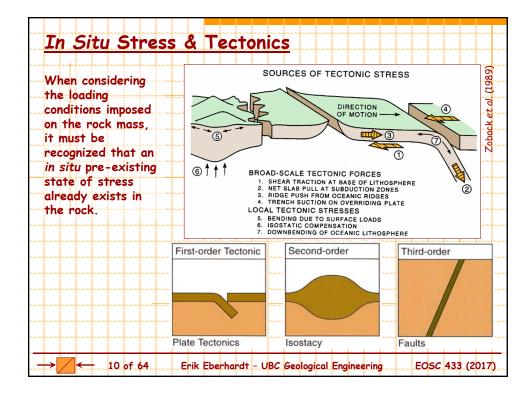
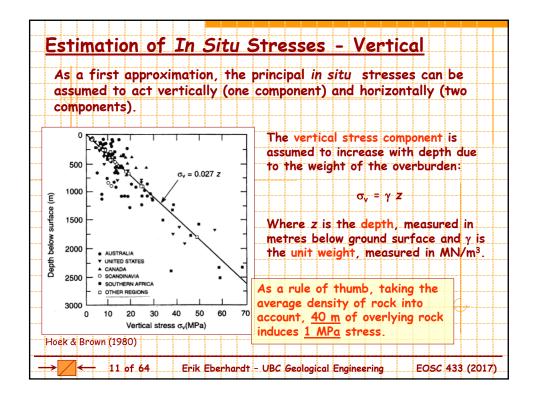
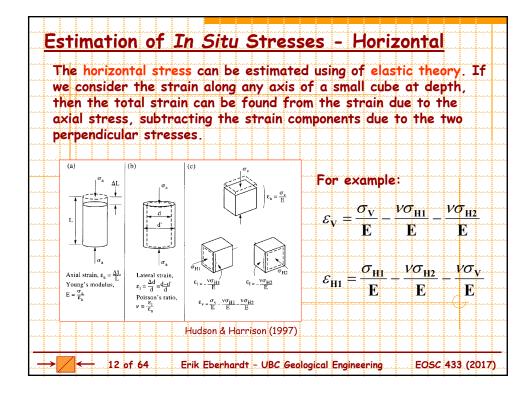

Why	S	uc	ly	S	tre	es	s?	>										~~~~			~~~~			_
																								~
Stres	s is	a	con	cep	nt v	vhi	ch	is	fı	inc	lan	ner	ta	†	o r	oc	k I	nea	che	ıni	cs			~-
princip	les	ar	d d	ppl	ica	itic	ons		Th	ere	a	re	th	re	e t	bas	ic	re	asc	ons	t)		~.
unders																							s:	~
	~~~~											~~~			~~~									~~~
	Гhe	re	is (	a b	re-	·e>	cist	tin		tr	ess	s	tat	e	in	th	e c	ro	und	1 0	Ind	w	e	~
			o u																					e
			to					÷																
															~~~~	~~~~	~~~~							~
	Dur	ing	ro	ck (exc	av	at	ion	,	he	s	tre	SS	st	at	e c	an	c	nar	Ige		~~~		~
	dra	ma	tica	lly.	Т	his	is	Ь	ec	aus	se	roc	:k,	W	hic	h.	pro	evic	ous	ily				~
	con	taiı	ned	sti	res	se	s.,	ha	s l	bee	n	rei	no	ve	l a	nd	t	ne	loo	ids	m	us	t b	e
			ibu										~~~~											
													~~~~											~
			is													ant	tt)	1 a	nd	te	ns	or		
	are	no	t e	nco	unt	ter	ed	in	e	ver	yd	ay	li	e.									<del></del>	
	~~~~											~~~			~~~~									~
	~~~~											~~~~			~~~~									
$\rightarrow \square \leftarrow$		of	64		E	rik	Fhe	rha	rdt	- 11	BC	Geo	امما	cal	Eno	inac	nin			FO	sc	433	(2	h

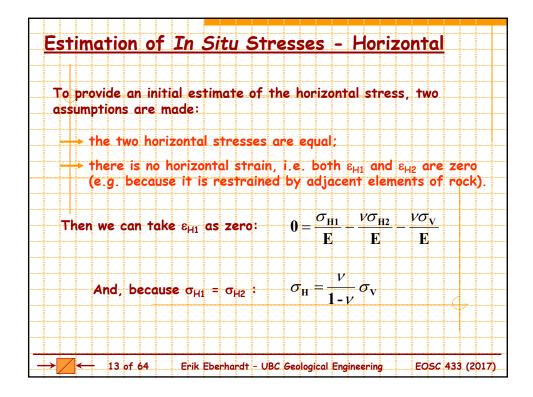


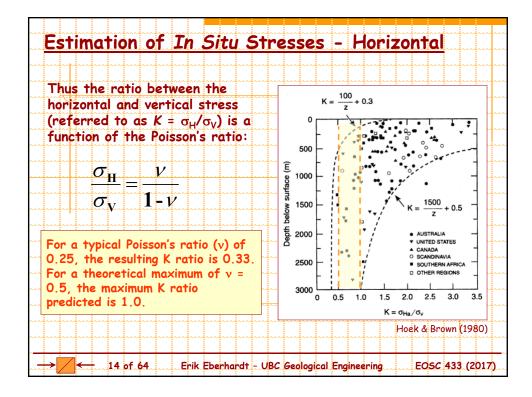


Lower Kih	ansi Hydr	opower Pro	ject, Tanzania
RENVA I	-	States and the second	The Lower Kihansi
TANZAMA MAR	Cator 1 d		hydroelectric project
Emilian Com	Dard 1		seeks to utilise the
and Jucedimon			waters of the Kihansi
internet & manufacture and the	1 - 17-		river by channelling part
ART OF			of the river flow
3.82	1 Pla	1 Com	upstream of the Kihansi
	Set Par	Sec. Co	Falls into an inclined hig
	Si la	Con the second s	pressure headrace tunnel. The headrace
	Statistics of	and and	tunnel was planned to be
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.36	largely unlined.
			la gery annea.
J - Chi	the		
	- Contraction		
			cost 3 to 5 times less than
			n this case a cost savings of
		the order of \$	10-15 million.
	ALL IS A		
→ <b>/</b> ← 4 of	64 Frik Ebe	rhardt - UBC Geologic	al Engineering EOSC 433 (20

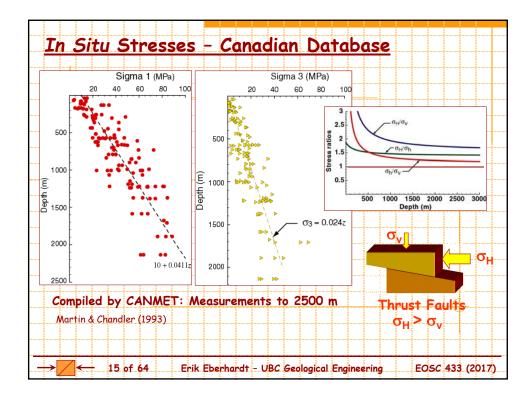


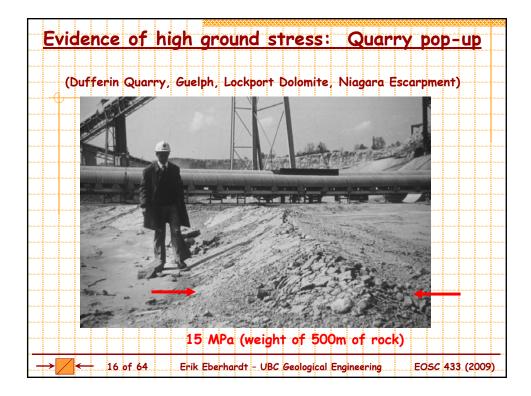



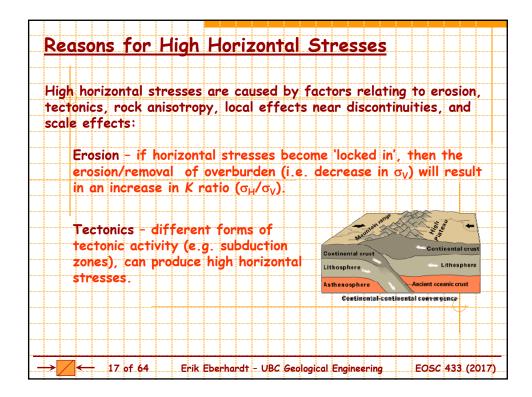



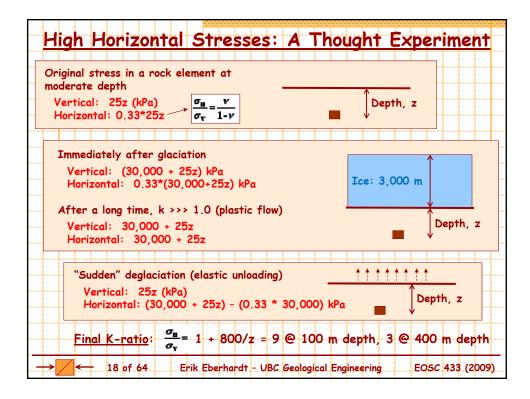



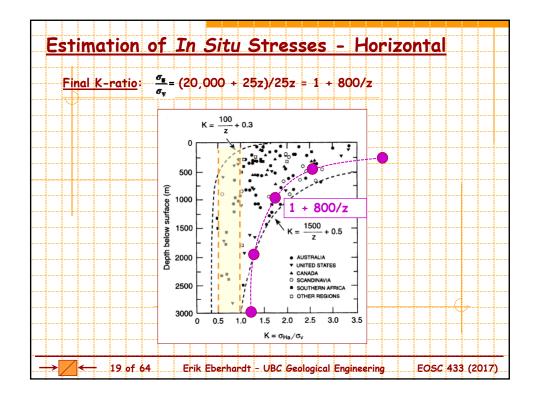



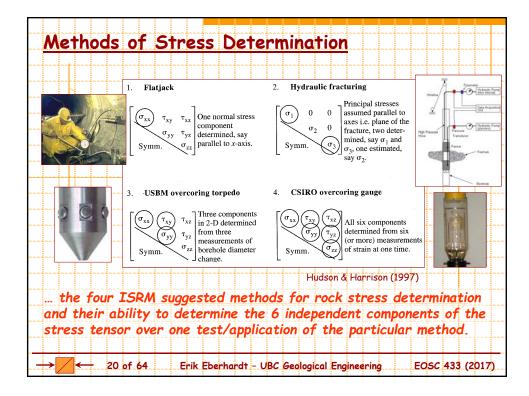



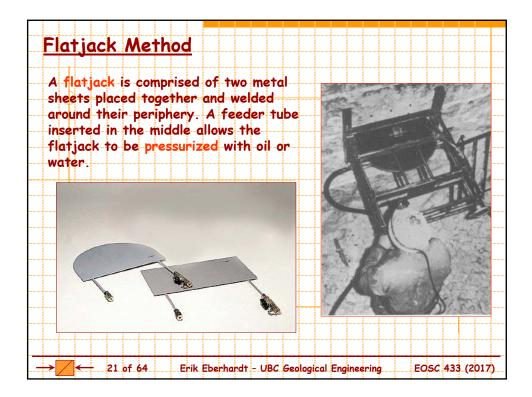



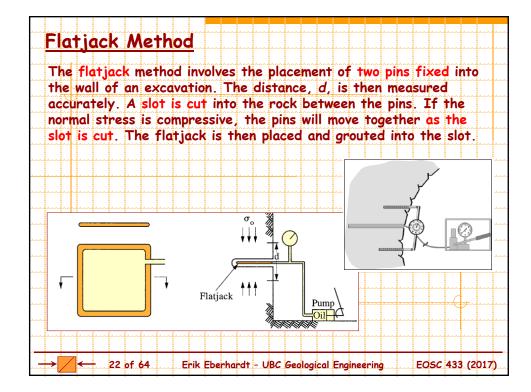



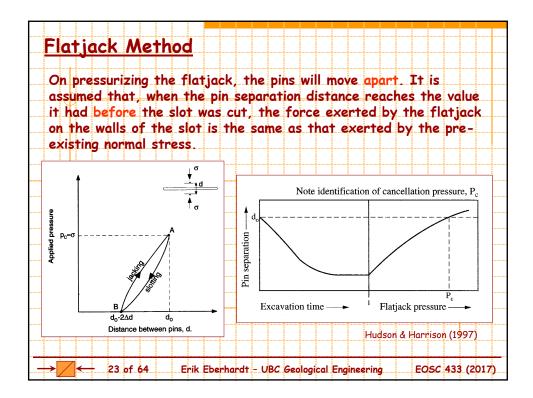



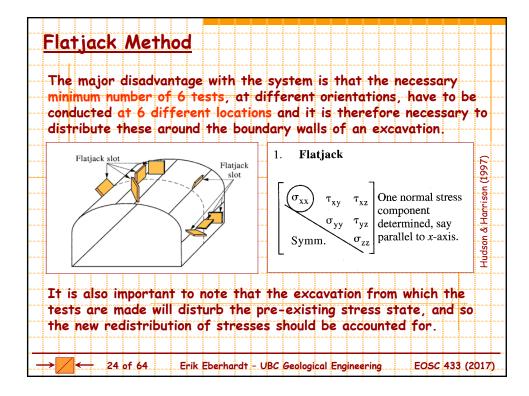



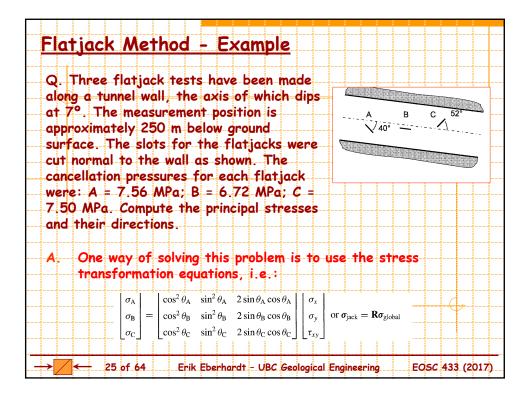



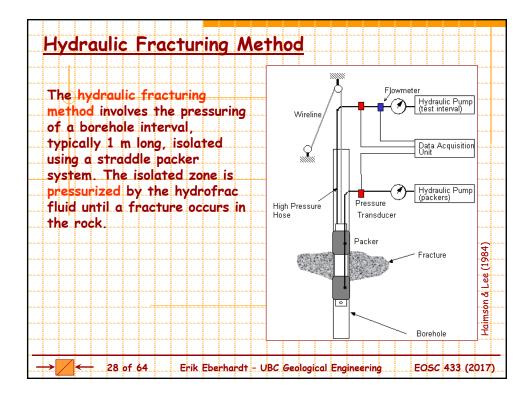



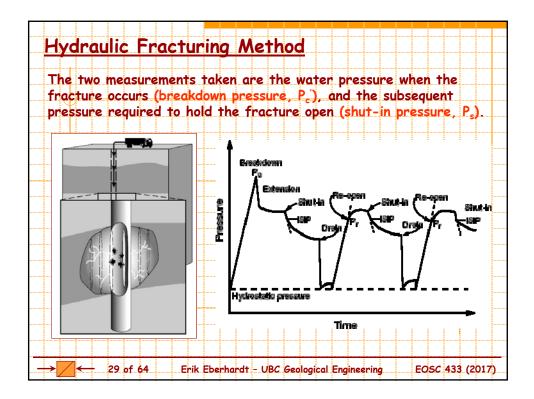



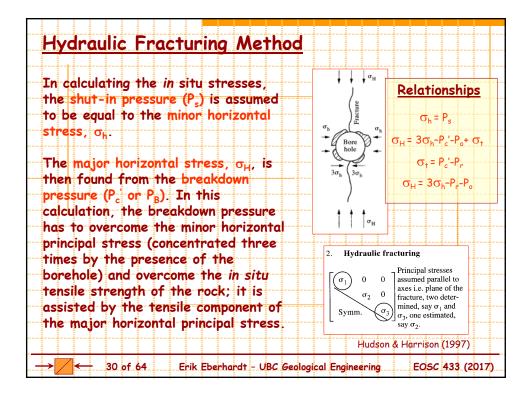



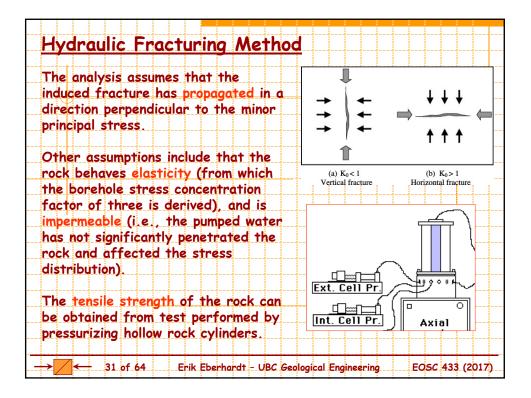


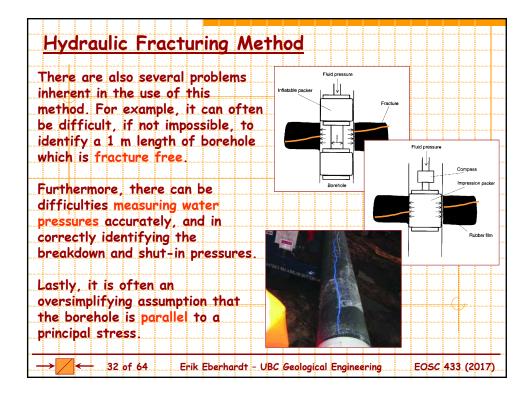


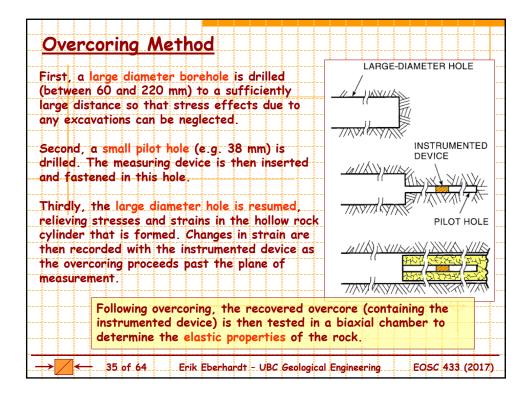



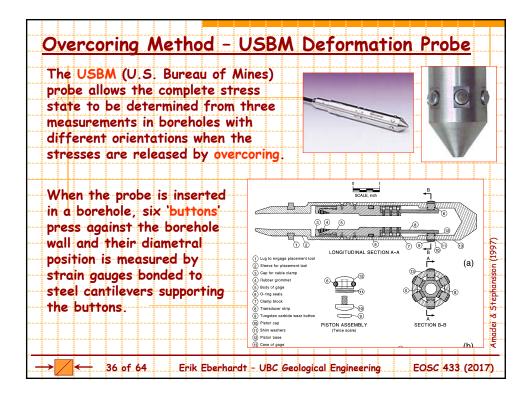



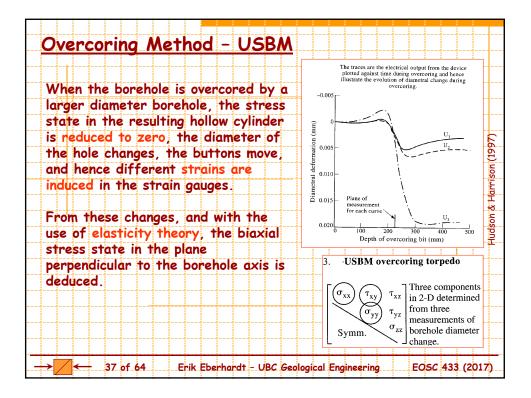



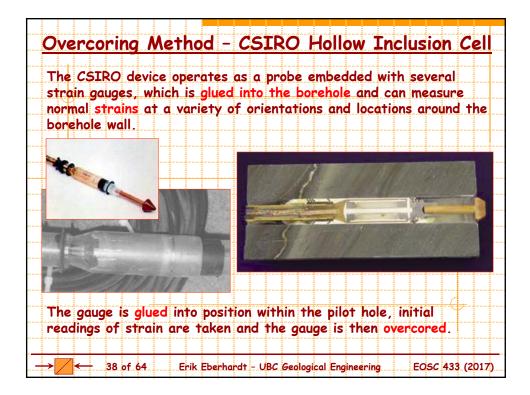


FI	<b>1</b> 0'	F i	2	k	M	0	th	0			W/	or	.k	ed	F١	201	mr	مار						~~~
-	u	1				E			<u>.</u>				<u>N</u>	<u>- u</u>	<u> </u>	<u>u</u>								~~~
		~~~	~~~		~~~	~~~	~~~	~~~		~~~~		~~~	~~~~	~~~~	~ ~~~		[	Ĺ			A GHORDAN	-	:	
														the	rigi	nt,						С	52°	
	44.44	4~~~	4 m m M	4~~~					state and the second		dia tanàna mangka kaoka ka	and	~~~~	sitiv		-	~~~		Ĵ.	400	D		1	
							•							ng di				NORTH AND	N.					
		P																						100
			β_{tt}	Innel	= -	-7°;		β _A =	=	40°	+ f	s _{tunne}	=	-47°							Harr	ison	& Hu	ds
		$\beta_{\rm E}$	=	$0^{\circ} +$	$-\beta_{tu}$	nnel	= -	-7°;		$\beta_{\rm C}$:	= 52	2° +	β_{tur}	nel =	45°.	~~~							(20	00
~									eas										1.1					
									pe h c			cula	1	Jack A									$\theta_{\rm A} =$	
									dire				~~~	Jack H									$\theta_{\rm B} =$	
	4~~~	4~~~	4~~~	4~~~				4 m m m m	h f	*~~~	4~~~	4~~~	~~~	Jack (2	$\sigma_{\rm C}$:	= 7.5	0 MP	a; 6	c = /	³ c + 9	90°;	$\theta_{\rm C} =$	13
~~~					~~~	~~~	~~~	~~~		~~~			~~~~	~~~	~   ~ ~ ~		~~~							~~~
3	As	ser	abli	na	the	st	res	s †	ran	sfo	rm	itio	n e	auati	on f	or	all 1	hree	e fle	itia	ks	into	matr	ò
		rm							1000	~~~	1000		~~~~	~~~		-	1	~~~						~~~
~~~			<b>.</b>			0	σ _A		cos	$^{2}\theta_{A}$	si	$n^2 \theta_A$	2	$\sin \theta_{\rm A}$	cost	PA	$\sigma_x$						<del>.</del>	~~
						6	σB	=	cos	$^{2}\theta_{B}$	si	$n^2 \theta_{\rm H}$	3 2	$\sin \theta_{\rm B}$	cost	⁷ B	σ_y	ore	j _{ack} =	= Ro	global			~ •
						6	σc		cos	$^{2}\theta_{C}$	si	$n^2 \theta_0$	2	$\sin \theta_{\rm C}$	cost	°c_	τ_{xy}							~~
							_	_	Ī		_			_	_	Ē		_	_	-	-		_	_
\rightarrow	/	←		26	of (64		E	rik	Ebe	rha	rdt	- U	BC G	oloa	ical	Ena	ineer	ina		EO	5C 4	33 (2	01

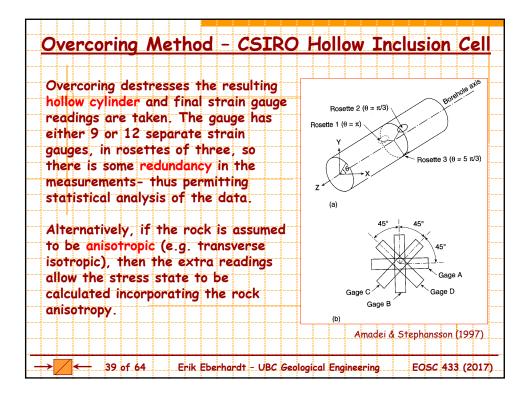

<u>F</u>	at	jq	<u>1C</u>	k	N	le [.]	th	00	•	- 1	W	or	·k	ec		Ex	a	mp	le				 			~~
4	Eval	ua	tio	n o	f +	his	ma	trix	gi	ves		6.72	=	0.	.015	0.9	985	0.2	98 42 000	σ_y					~~~~ ~~~~	
	Whi	ch	up	on	inv	ers	ion	giv	es	$\sigma_{_{glo}}$			Ē		1	1	1	e e	1	<u>ت (</u>		952 21 34	0.8 0.1 0.	60 13 514	7 6 7	.56 .72 .50
5	Fror	n	thi	5 W	e f	ind		$\sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$	=	[8. 6. 0.	31 70 00	MF	Pa.	p a v	rind nd ert	cipo the ical	il s pr an	tres inci id h	ses pal	be stre onte	o _y ar caus esses al, w	se t s ar	×y = e h is	0. a		
	Not whic over	h	is	a c	om	mor	00	cur	ren	ce.	Ν	ow	if ۱	gre ve	ate wer	er t	thai to c	n th	e ve	erti					e	
					1	1	1	1			1	250 fo		1	1	1	rock	× z	, ,	σ _v :	= 6.7	75 N	/iPa		بر 	
	This			-											L.,	11 E	J	11				1	L.,			

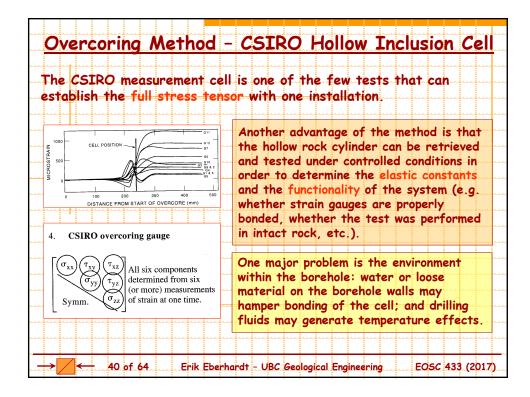


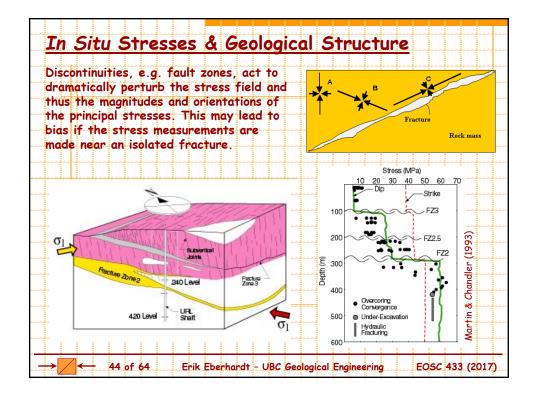


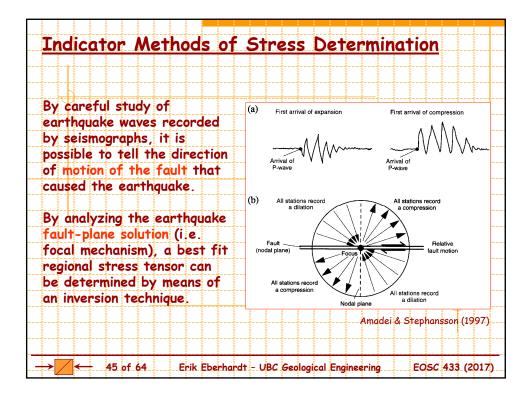


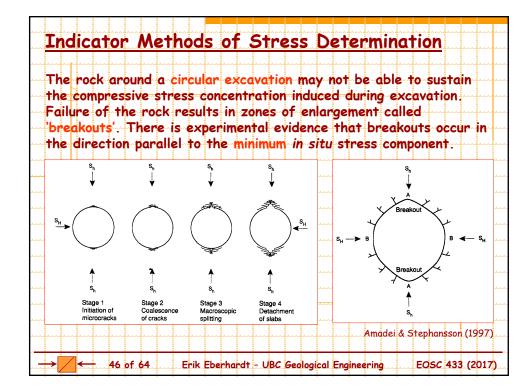

<u>Hy</u>	dr	au	<u>ilic</u>		Fr	a	:†(Jr	in	g	M	le [.]	th	00	<u> </u> -	· \	No	orl	<u>ke</u>		<u>Ex</u>	<u>(a</u>	m	ole	2
Q. mas										a g	ran	ite	ro	k	Dept (m) 500		Break	(N	pres (Pa) 4.0	sure,	PB	Shut-	(M	ressu Pa) B.O	re, I
Give stre acco	sse	s as	sun	ing	on	e i	; ve	rti	cal	an	d t	hat	th	e p	ress	sure	e va	lues	we	re (idjı	iste		to	
A. /						e re															****				~~~
		σ	tion , = P	s		+	(<u>1</u> ~(2	~~~~	~~~	~~~~	~~~~		~~~~	~~~~	hori hor										0
	σ_н =	30	h-P	- 0																1.0	1 C - 1			1.	
	σ _H =						~~~	~~~					۸Pa) - :	14 M	۱Pa	+ 10	MF	°a ⊏	- >	σ_{H}	= 2	0 N	APa	~~~
		3	The esti	ve	rtic ted	al fre	m	the	C۵ ۱۰۰۰	n n vert	ow our	be den		~~~~	ι4 Μ σ _v =									~~~~	~~~
		3	The esti	ve	rtic ted 2 y	al fre	om 27	the (N/	ca 0 (m ³	n n vert	ow bure r g	be den ran	ite)	·····		: 50)Om		.002		\N/	m ³ :	= 13	~~~~	~~~

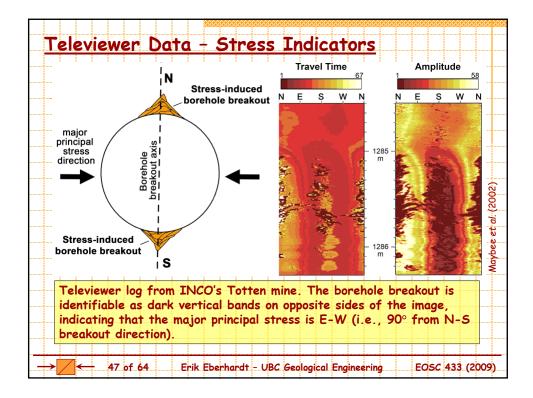

Borehole Relief Methods -	Overcoring
The main idea behind relief methods is to isolate (partially or wholly) a rock sample from the stress field that surrounds it and to monitor the response. As such, the stresses are not related to applied pressures, such as with the hydraulic tests. Instead, the stresses are inferred from strains generated by the relief (unloading) process and measured directly on the rock associated with the relief process.	methods its surface strain or deformation response: Monitor hole deformation due to drilling of parallel hole Center hole drilling or undercoring Borehole Overcoring of prestressed cells relief Overcoring of deformation-type gages such as the USBM gage Overcoring of a gage attached to the flat end of a borehole: Dorstopper and photoelastic disks Overcoring of CSIR-type triaxial strain cells
Overcoring methods are by far the most commonly used relief method.	Rock mass • Bored raise method relief • Back-analysis methods • Under-excavation technique

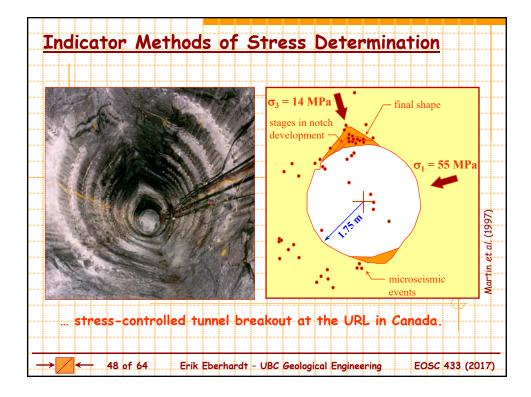


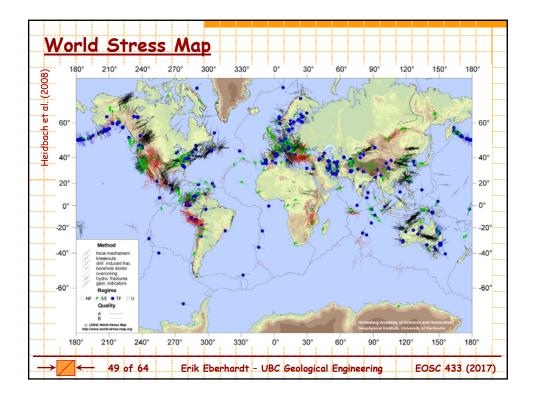





<u>Stress</u>	Determination I	Nethods - Summa	iry
		Eber	hardt & Stead (2011
Method	Advantages	Limitations	Suitability
Overcoring	Most developed technique in both theory and practice; 3- D.	Scatter in data due to small rock volume; requires drill rig.	Measurement depths down to 1000m.
Doorstopper	Works in jointed and high stressed rocks.	Only 2–D; requires drill rig.	For weak or high stressed rocks.
Undercoring	Simple measurements; low cost; can utilize existing underground excavation	Measures local stresses (must be related to far-field stresses); rock may be disturbed.	During excavation.
Hydraulic fracturing	Can utilize existing boreholes; tests large rock volume; low scatter in results; quick.	Only 2-D; theoretical limitations in the evaluation of s _H .	Shallow to deep measurements.
HTPF	Can utilize existing boreholes; 3-D; can be applied when high stresses exist and overcoring and hydraulic fracturing fail.	Time-consuming; requires existing fractures in the hole with varying strikes and dips.	Where both overcoring and hydraulic fracturing fail.
			· · · · · · · · · · · · · · · · · · ·
	41 of 64 Erik Eberhardt	- UBC Geological Engineering	EOSC 433 (2017)


<u>Stress</u>	Determination	Methods – Summa	ry (cont.)
		Ebei	rhardt & Stead (2011
Method	Advantages	Limitations	Suitability
ASR/DSCA/ RACOS	Usable for great depths.	Complicated measurements on the micro-scale; sensitive to several factors	Estimation of stress state at great depth.
Acoustic emissions (Kaiser effect)	Simple measurements.	Relatively low reliability; requires further research	Rough estimations.
Focal mechanisms	For great depths; existing information from earthquake occurrence.	Information only from great depths.	Seismically active areas.
Core discing	Information, obtained from borehole drilling.	Only qualitative estimation.	Stress estimation at early stage.
Borehole breakouts	Existing information obtained at an early stage; relatively quick.	Orientation information only; theory needs to be further developed to infer stress magnitudes.	Deep boreholes or around deep excavations.
Back analysis	High certainty due to large rock volume.	Theoretically, not unique solution.	During excavation.
Geological indicators	Low cost; 2-D/3-D.	Very rough estimation; low reliability.	At early stage of project.
→/←	42 of 64 Erik Eberhardt	- UBC Geological Engineering	EOSC 433 (2017


																		ni													
Stro and																														re	5S
veri																															~~~
date	a,	n	na	Y	۵	s	s t	e	0	bt	ai	ne	d	vi	a	in	diı	rec	† *	or	i	ndi	c	170	r	m	eti	hoo	ls.		~~~
			~										M	etho	rd										١	/olum	e (m ⁱ	3)			
			Ī	łyc	lrau	ılic	neth	ods					Hydi Sleev Hydi	'e fr	actu	aring	5	e-exi	sting	fract	ures	(HTI	PF)			0.5- 10 1-		-			~~~
	~~		F	Reli	ef n	neth	ods							erco nole	oring	g ief m		s ds (o	vercc	oring,	bor	ehole	:			1- 10 10 ⁻³ -	-3	2 ~	2		~~~
	~+-		~-															olumo echni			aise					10 ² -	10 ³	Ŷ	(1997		~~~
	-		~ J.	ack	ing	me	hod	5					Flat j Curv				hod									0.5– 10		Ŷ	Nos		~~~
	~	~~~~	~ S	tra	in r	ecov	ery	metl	hod	. S								ery (. ve ar		s (DS	SCA)					10 10	-3 -4	ŕ	nans	~~~	~~~
	1		Ē	lore	ehol	le br	eakc	ut n	netl	nod								anal								$10^{2} - 10^{-2} - 10^{-2}$	10^{2} 10^{2}	Ĺ	Stephans		~~~
~~~~~	~~	~~~~	~ C	Oth	er n	neth	ods					]	Indir Inclu	iqua ect i sior	ake i meti ns in	focal hods 1 tim	meo (Ka e-de	is hanis iser e pende lual s	ffect, ent rc	ck (						10 $10^{-4}-$ $10^{-2}-$ $10^{-5}-$	9 10 ⁻³ 1	h	Amadei & S	<del>,</del> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~
















Lec	tu	re	2	Re	fe	er	er		es																	
Amadei	в	å 5	ted	han	ssor	C	(1	997	). F	ock	Sti	ress	anc	l its	Me	asu	rem	ent	Cho	ıpm	an 8	Но	ili: î	ond	on.	
		~~~	~~~	~~~	~~~~		~~~~	~~~	~~~	~~~	~~~~	~~~~	~~~	~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~	~~~	~~~	~~~	
Broch, ISRM 1																										ıgs,
Cornet Rock Er																ern	ina	rion	me	Tho	IS.	in (om	pre	nen:	sive
	Ĩ.		2	5																						
Dahlø,																										
drainag																										
hydroel 40(1): 6			owe	r p	roje	ст,	Ian	zan	ia. 1	inte	rna	tion	ai J	our	nai	от н	юск	Me	cna	nics	an	a N	inin	g S	cien	ces
	[
Eberha							•		•														2			
Handbo 551-57		3rd	Edi	tior). E	dite	d b	у P.	Da	rling	J, S	ocie	ty i	or	Min	ing,	Me	tallı	irgy	άt	гхрі	ora	tion	, vo	. 1,	pp.
	ľ	~~~~	~~~~					~~~					~~~~	~~~~			~~~~	~~~~	~~~~	~~~~						
Haimso																							anc	its	use	at
a site o	t inc	luce	d se	ISM	ICIT	у. Ц	n Pr	oc.	25t	n U:	5 RC	DCK I	мес	n. 5	ym)., N	lew	yor	k, pl	5, 19	4-2	03.	~~~	~~~	~~~	
Harriso	n, .	TP .	ŝН	uds	on,	JA	(2	000).	Engi	nee	ring	Ro	ck	Me	har	ics	- F	art	2:	Illu	istr	ativ	e I	Vor	ked
Example	es. E	lsev	ier	Sci	ence	:: O	xfoi	٠d.																		
Heidba	h.	О.	Tin	aav	м	. в	artl	1. /	Α.	Reir	eck	er.	J.	Ku	rfel	5. C	8	Mü	ller	В	(20	208	5	The	Wa	rld
Stress																					•			e	7	
Hoek,	FJ	R	row	<u> </u>	FT	(19	801	<u>-</u>	Inde	ron	our	4 5	YCO	vati	one	in	Po	ck	Tne	+i+	itio		fΛ	Aini	0	and
Metallu						(1)	,		mu	, gi	oun	ч L	~CU	van	0113		100	un.	TUC			, 0	["]		9	and
	57																									
\rightarrow	-		51	of (4		F	rik	Fhe	rha	rdt	- U	RC	Geo	امما	cal	Eno	inee	nin			FC	sc	43	3 (2	017

Î,		:tı	10		Da	£		-	-			~~~	~~~		~~~				~~~	~~~	~~~	~~~	~~~			~~~~	~~~
	ec	: I L	11.6	5	Ke	1	er	er		es		~~~	~~~		~~~	~~~	~~~	~~~	~~~~	~~~	~~~	~~~	~~~	~~~		~~~~	~~~
Hur	Isor	J	4 8	Har	risc	n	ТР	(199	97)	Fn	nine	erir	n R	ock	Mei	char	nics	- A	n Tn	tro		ion	to 1	the	Prin	cinl	25
		r Sc									9		g													p.	
Mar	rtin	, CC	8	Cha	ndle	r,	NA	(19	93)	S	tres	sН	ete	roge	nei	ty c	and	geo	ogi	al	stru	ctu	res.	In	tern	atic	na
		lof																								~~~~	~~~
Mai	rtin	, CC), R	ead	RS	å	Ma	rtin	o, :	TB (199	7).	Ob	serv	atio	ns	of l	pritt	le f	ailu	re (arou	nd	a ci	rcul	ar t	est
tun	nel.	Inte	erno	tion	al J	our	nal	of R	ock	Me	chai	nics	ano	l Mii	ning	Sc	ienc	es 3	4(7): 10	65	107	3.			~~~~	~~~
May	ybe	e, V	VG,	Cai	, M	, K	aise	er,	PK,	Ma	lone	у ,	SM	å	Mcl	Jow	ell,	GM	-(2	002). '	Tele	viev	ver	loge	jing	of
		atior sium																			teri	nati	onal	K	GS	/MG	LS
· · · ·																											
~~~	-	A &			~~~	~ ~ ~	~~~		~~~		~~~	~~~	~~~	~~~~	~~~				~~~	~ ~ ~ ~		~~~	~~~			~~~	~~~
	-29	, M	L, 1	Zobo	ack,	M	D,	et c	il. (	198	39).	Glo	ibal	pat	ter	ns (	of 1	ect	onic	st	ress	. N	atu	re :	341(	624	0)
- /1		<b>u</b> .																									
																											~~~
					~~~~				~~~													~~~	~~~			~~~~	~~~
																										<del>.</del>	
					~~~~																						
	<u> </u>			52				-						0.0	~			Eng					50		433	10	01