

			_						
<u>The</u>	<u>Stabi</u>	lizati	on S	trate	<u>egy</u>				
The ef	fects of	excavat	tion (di	splacen	nents,	stress a	hanges	, etc.), (and the
optima	l stabiliz	ation str	rategy	to acco	ount to	or them,	should	not blind	dly
attemp	ot to mai	ntain the	e origii	nal conc	litions	(e.g. b)	/ instal	ling massi	ive
suppor	t or rein	forceme	nt and	hydrau	lically	sealing	the ent	ire excav	vation).
As the	displace	ments o	ccur, e	engineer	ing ju	dgement	may d	etermine	that the
can be	allowed	to devel	op tull	y, or b	e cont	rolled lo	iter	1/2	1
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			EL.	
Reinfor	cement:	the prin	nary ol	ojective	is to			1	
nobiliz	e and coi	nserve t	he inhe	rent					1 28
strengt	th of the	rock m	155 50	that it				A CON	-
oecome	s self-si	upporting]					OFT	
						Rein	force		Rockmass
Suppor	t: the pr	imary ol	jectiv	e is to	truly		σ	R	Bulking
support	the roc	k mass l	oy stru	ctural				5_//	
elemen	ts which	carry, i	n whole	e or par	• t ,		1		
the we	ights of	individua	l rock	blocks				×Z	Hold
solated	d by disc	ontinuiti	es or c	of zones	s of	σ	N.		S
oosene	d rock					F	-	Retain	
						· · · ·			
→ / <	— 6 of •	41	Erik Ebe	rhardt -	UBC Ge	ological Er	gineering	EOS	C 433 (201

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets		
J – Very good rock RMR: 81-100	Full face, 3 m advance	Generally no support requ	ired except spot b	oolting		
II – Good rock RMR: 61-80	Full face, 1-1.5 m advance. Complete support 20 m from face	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh	50 mm in crown where required	None		
III – Fair rock <i>RMR</i> : 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with wire mesh in crown	50-100 mm in crown and 30 mm in sides	None ~		
IV – Poor rock <i>RMR</i> : 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh	100-150 mm in crown and 100 mm in sides	Light to medium ribs spaced 1.5 m where required		
/ – Very poor ock 2MR: < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shoterete as soon as possible after blasting	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close in- vert			

Worked	Exampl	e: Roc	k-Suppo	rt Inter	raction	
A. To find th	e support r	eaction line	e, we assume	e the lining l	behaves as a	
thick-walle	ed cylinder	subject to	radial loadir	ng. The equa	ation for the	
lining char	acteristics	in this cas	e is:			
		-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			1
		E.	$a^2 - (a - t_2)^2$			
	$k = \frac{1}{1}$					
		$1 + \nu_{\rm c} (1 - 2)$	$2v_{\rm c})a^2 + (a - b^2)a^2 + (a -$	$(-t_{\rm c})^{2}$		
3 Solvina	for the sti	iffness of	the linina w	here t = 1	85 -	
1 70 =	0.15 m E	= 30 GPa	and $y = 0$	25 we get:		
····	U.1U , L	c _ 00 01 0		LO, NE GEI.		
7	30 GPa	(1.85 <i>m</i>	$(1.85m)^2 - (1.85m)^2$	$-0.15m)^2$		
k = -	1 1 0 25		$(95m)^2 + (1.9)$	5m 0 15m	$\overline{\mathbf{y}^2}$	
	1 + 0.25	(1 - 0.3)(1.6)	55m) + (1.0)	5m - 0.15m	り」	
k - 2	78 GPa				(
····· ~	<u></u>					2-1

	<u>Support 2, having a lower stiffness, is installed</u>
⊊Î^A	at F and reaches equilibrium with the rock mass at point C:
bressure	Provided the corresponding convergence of the
B C D E	system provides a good solution. The rock mass carries a major portion of the redistributed
$\begin{array}{c} \overset{ve}{\mathbf{z}} \\ 0 \\ F \\ G \end{array} \xrightarrow{f} G \end{array}$	stressed excessively.
Radial displacement, δ _i	Note that if this support was temporary and was to be removed after equilibrium had been reached, uncontrolled displacement and collapse of the rock
	mass would almost certainly occur.

Le	22	tu	re	2	Re	f	er	er		es									~~~~	~~~~							~~~~
_																											
Bien	iaw	ski,	ZΤ	(19	89). E	ngin	eer	ing	Roc	κM	ass	Cla	ssif	icat	ions	: A	Con	nple	te l	Man	ual	for	Eng	inee	rs d	and
Geol	ogi	sts i	n M	inin	g, C	vil,	and	Pet	role	um	Eng	inee	ring	9. W	iley	: Ne	ew y	ork		~~~~		~~~~		~~~~		~~~~	~~~
Brac	ly.	BHO	9 &	Bro	wn,	ЕΤ	(20	006). R	ock	Me	cha	nics	foi	• Ur	nder	gro	und	Mir	ning	(3r	^I Ec	litio	n).	Cha	omai	n &
Hall	Lo	ndoi	i	~~~	~~~	~~~	~~~~	~~~~	~~~	~~~~	~~~	~~~	~~~~	~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~	~~~	~~~~
Dae	men	i, J	JK	(197	7).	Pro	ble	ms i	n tı	inne	l su	рро	rt m	ech	anic	s. L	Inde	rgr	oun	l Sp	ace	10	163	172		~~~	~~~~~
Grin	sta	id, 1	E &	Bar	ton	, N	(19	88)	. D	esig	n a	nd r	netl	nod	s of	roo	k s	uppo	ort.	Noi	we	jian	Tu	nnel	ling	Тос	lay,
Nor	weg	ian .	Soil	ana	Ro	ck E	ngir	eer	ing	Ass	ocio	itior	i, pu	bl.∘ı	10. E	5, pr	. 59	-64	· · · · ·	~~~~	~~~	~~~	~~~	~~~	~~~	~~~	
Hari	riso	n, i	JP (& ⊦	luds	on,	JA	(2	000). I	Eng	nee	ring	Ro	ck	Me	har	ics	~~ F	art	2:	Illu	str	ativ	e V	Vorl	ked
Exa	nple	es. E	lsev	vier	Sci	ence	2: O	xfoi	rd.													~~~		~~~		~~~~	~~~~~
Hoe	k, I	Ë, k	ais	er,	PK	åE	awa	len,	W	F (199	5).	Sup	por	t o	fυ	nde	rgro	und	~E×	cav	atio	ns	n H	larc	Ro	ck.
Balk	ema	ı: Ro	tte	rdai	n.				~~~		~~~								~~~~	~~~~		~~~		~~~			~~~~~
Hud	son	J	8	Har	riso	on,	JP ((199	7).	En	gine	erir	g R	ock	Mea	char	ics	- AI	n In	tro	duct	ion	to 1	he	Prin	ciple	25 .
Else	vier	Sc	enc	e: C	xto	rd.																					
Kais	er,	PK,	Di	ede	rich	s, I	MS,	M	arti	n, C	ه, د	5har	pe,	J	& S	itei	ner,	W	(20	00)). L	nde	rgr	ouno	l w	orks	in
harc	n r	ock er i	TUI	nnei 341-	11ng 926	an	a r	nınıı	ng.	In	<i>6</i> e	oEn	g20	00,	Me	ZIDO	urne	2.	ecr	nor	nıc	Put	lisr	iing	60	mpa	ny:
Lone	T		104	1	TL						<i>c</i>				-		~					ти		0		246	
Lang	. '	Αţ	190	1).	The	ory	anc	i pro		ce o	T PC	CKI	porr	ing.	Tra	r15.	300	70(1	п. с	ngrs	., A	17/11	- 20	0	223	540	s.
Win	dso	r, C	R (199	7) .	R0	CK I	ein 1	ford	eme	ent	sys	tem	S	Inte	rna	tion	al S	Tour	nal	of	Roc	k A	Neci	hani	cs (and
~~//41/71	пу≂	ocie	HCE.	ə 34	(U)	71)	-70	4:~-	~ ~ ~ ~	~~~~	~~~		~~~~	~~~	~~~~	~~~	~~~~	~~~~	~~~~	~~~~	~~~		~~~		~~~	~~~~	~~~~~
	7			41	of .	41		E	nik	Eba	nha	nd+		PC	Gas	امما	cal	Eno	ince	nin			EC	<u>c</u>	433	12	017)
- Take	/		~~~~	41	91 '	τ λ	~~~~	C	.16	LDE	ma	cur.	- 0	06	960	logi	cai	eng	mee	andi	• • • •	~~~	EU	36	400	. (4	uri)