

## Kinematic Analysis - Underground Wedges



The minimum requirement to define a potential wedge is four non-parallel planes: the excavation periphery forms one of these planes. On a hemispherical projection, these blocks may be identified as spherical triangles where the plane of projection represents the excavation surface.

If a tetrahedral block/wedge exists, there are three kinematic possibilities to be examined: the block falls from the roof; the block slides (either along the line of maximum dip of a discontinuity, or along the line of intersection of two discontinuities); or the block is stable.


[^0]
## Geometrical Analysis of Maximum Wedge Volume

Once a series of joint sets have been identified as having wedge forming potential, several questions arise :
$\Rightarrow$ in the case of a falling wedge, how much support will be required to hold it in place (what kind of loads on the added support can be expected, how dense will the bolting pattern have to be, etc.):
$\Rightarrow$ in the case of a sliding wedge, do the shear stresses exceed the shear strength along the sliding surface, i.e. that provided by friction and sometimes cohesion (in the form of intact rock bridges or mineralized infilling), and if so, how much support will be required to stabilize the block, how dense will the bolting pattern have to be, etc..

In both cases, the volume/weight of the maximum wedge that may form is required. This can be determined through further geometrical constructions.


## Geometrical Analysis of Maximum Wedge Volume

To calculate the maximum wedge volume:


1) Identify the joint planes/great circles on the stereonet plot that form the wedge. In this example, the three persistent, planar discontinuity sets have dip directions/dips of: (1) 138/51, (2) $355 / 40$, (3) $219 / 67$.

Together, these joints are known to form wedges within the horizontal, planar roof of an excavation in sedimentary rock.

The stereonet construction is finished by drawing lines passing through the corners of the spherical triangle and centre of the stereonet.
$\rightarrow \square \longleftarrow 4$ of $16 \ldots$ Erik Eberhardt - UBC Geological Engineering


## Maximum Wedge Volume

3) On the scaled window, mark an arbitrary horizontal reference line and starting point. For example, about halfway along the western margin of the roof.
Inspection of the spherical triangle in the stereonet plot suggests that the corner of the face triangle formed by planes 2 and 3 will touch the western margin of the roof, and the corner formed by planes 1 and 2 will touch the eastern margin when the largest possible tetrahedral block is considered.

As such, the arbitrary reference point can represent the corner of the face triangle formed by planes 2 and 3.



## Maximum Wedge Volume

4) The lines associated with
planes 2 and 3 can now be
added to the window
construction by counting off
the angles between the
horizontal reference line on
the stereonet plot (at $025^{\circ}$ )
and the diametral lines for
planes 2 and 3 (striking at
085
respectively). $129^{\circ}$.
These angles can then be
transferred to the window
construction and measured
off relative to the starting
point and reference line
along the western margin of
the roof.
$\rightarrow \square$ Erik Eberhardt UBC Geological Engineering



## Maximum Wedge Volume




## Maximum Wedge Volume

10) To find the volume of the wedge, the wedge height and the face area are required. The face area, $A_{f}$, has already been found. The wedge height, $h$, is given by:
$h=l_{12} \tan \beta_{12}=l_{23} \tan \beta_{23}=l_{13} \tan \beta_{13}$
which for this example problem comes to 1.47 m .

The volume, $V$, of the tetrahedral block is then given as:
$V=A_{\mathrm{f}} h / 3$
resulting in a block volume of approximately $5 \mathrm{~m}^{3}$.

$\longrightarrow \quad 14$ of $16 \quad$ Erik Eberhardt - UBC Geological Engineering $\quad$ EOSC 433


## References

Hudson, JA \& Harrison, JP (1997). Engineering Rock Mechanics - An Introduction to the Principles Elsevier Science: Oxford.
Priest, SD (1985). Hemispherical Projection Methods in Rock Mechanics. George Allen \& Unwin London.
$\rightarrow 16$ of $16 \quad$ Erik Eberhardt - UBC Geological Engineering $\quad$ EOSC 433


[^0]:    Erik Eberhardt - UBC Geological Engineering

