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Disclaimer before beginning your problem assignment:Disclaimer before beginning your problem assignment:

Pick up and compare any set of textbooks on rock mechanics, soil 
mechanics or solid mechanics, and you will find that the discussion on 
Mohr Circles, stress-strain analysis, matrix math, etc., either uses 
different conventions or contains a typo that will throw your calculations 
off. Clockwise is positive, clockwise is negative, mathematical shear off. Clockwise is positive, clockwise is negative, mathematical shear 
strain, engineering shear strain… It all seems rather confusing.

But instead of becoming frustrated or condemning the proof-reader of a 
given textbook (or these notes), I like to look at it as a good lesson in not 
relying 100% on something, especially at the expense of your judgement. 
The notes that follow come from several sources and I have tried to 
eliminate the errors when I find them. However, when using these notes 
to complete your problem assignment, try to also use your judgement as to 
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whether the answer you obtain makes sense. If not, consult a different 
source to double check to see if there was an error.

On that note, if you find an error and/or a source that you would 
recommend as having given you a clearer understanding of a particular 
calculation, please let me know.   



2

Understanding StressUnderstanding Stress

There is a fundamental difference  both conceptually and 

Stress is not familiar: it is a tensor quantity and tensors are 
not encountered in everyday life.

There is a fundamental difference, both conceptually and 
mathematically, between a tensor and the more familiar quantities 
of scalars and vectors: 

Scalar: a quantity with magnitude only (e.g. temperature, time, mass).

Vector: a quantity with magnitude and direction (e.g. force, velocity, 
acceleration).
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Tensor: a quantity with magnitude and direction, and with reference to 
a plane it is acting across (e.g. stress, strain, permeability).

Both mathematical and engineering mistakes are easily made if this 
crucial difference is not recognized and understood.

The Stress TensorThe Stress Tensor
The second-order tensor which we will be examining has: 

- 9 components of which 6 are independent;
- values which are point properties;
- values which depend on orientation relative to a set of reference axes;
- 6 of the 9 components becoming zero at a particular orientation;
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p g p
- three principal components;
- complex data reduction requirements because two or more tensors 

cannot, in general, be averaged by averaging the respective principal 
stresses.
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Components of StressComponents of Stress

On a real or imaginary plane through a material, there can be 
normal forces and shear forces. These forces create the stress 
tensor. The normal and shear stress components are the normal 
and shear forces per unit area.

Normal
Stress ()

Shear
Stress ()
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It should be remembered that a solid can sustain a shear force, 
whereas a liquid or gas cannot. A liquid or gas contains a pressure, 
which acts equally in all directions and hence is a scalar quantity.

Force and Stress Force and Stress 

The reason for this is that 
it is only the force that is 
resolved in the first case 
(i.e. vector), whereas, it is 
both the force and the areaboth the force and the area
that are resolved in the 
case of stress (i.e. tensor).

In fact, the strict definition of a 
second-order tensor is a quantity that 
obeys certain transformation laws as the 
planes in question are rotated. This is 
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p q
why the conceptualization of the stress 
tensor utilizes the idea of magnitude, 
direction and “the plane in question”.

Hudson & Harrison (1997)
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Stress as a Point Property Stress as a Point Property 

Because the acting forces will vary 
according to the orientation of A within 
the slice, it is most useful to consider the 

l t (N/A) d th  h  normal stress (N/A) and the shear 
stress (S/A) as the area A becomes 
very small, eventually approaching zero.
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Although there are practical limitations in reducing the size of 
the area to zero, it is important to realize that the stress 
components are defined in this way as mathematical 
quantities, with the result that stress is a point property.

Stress Components on an Infinitesimal Cube Stress Components on an Infinitesimal Cube 
For convenience, the shear and normal components of stress may be 
resolved with reference to a given set of axes, usually a 
rectangular Cartesian x-y-z system. In this case, the body can be 
considered to be cut at three orientations corresponding to the 
i ibl  f  f  b  visible faces of a cube. 
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To determine all the stress components, we consider the normal 
and shear stresses on all three planes of this infinitesimal cube.

H
ud

so
n
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Stress Tensor ConventionsStress Tensor Conventions
Thus, we arrive at 9 stress components comprised of 3 normal and 
6 shear components. 

The standard convention for denoting these components 
is that the first subscript refers to the plane on which 
the stress component acts  and the second subscript 

Hudson & Harrison (1997)

9 of 79 Erik Eberhardt – UBC Geological Engineering                EOSC 433

the stress component acts, and the second subscript 
denotes the direction in which it acts. 

For normal stresses, compression is positive. For shear 
stresses, positive stresses act in positive directions on 
negative faces (a negative face is one in which the outward 
normal to the face points in the negative direction).

Stress Components on a Cube Stress Components on a Cube 

Geotechnical Engineering
-Right-hand systems
-Compression positive
-Tension negative
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Hudson & Harrison (1997)
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Symmetry in the Stress Matrix Symmetry in the Stress Matrix 

Although we arrive at 9 stress components in 
the stress matrix, we can assume that the 
body is in equilibrium. By inspecting the 
equilibrium of forces at a point in terms of equilibrium of forces at a point in terms of 
these 9 stress components, we can see that 
for there to be a resultant moment of zero, 
then the shear stresses opposite from one 
another must be equal in magnitude.

Thus, by considering moment 
ilib i  d h   d 
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equilibrium around the x, y and z
axes, we find that: 
xy = yx yz = zy xz = zx

Symmetry in the Stress Matrix Symmetry in the Stress Matrix 

If we consider the stress matrix 
again, we find that it is 
symmetrical about the leading 
diagonal.

It is clear then that the state of stress at a point is defined 
completely by six independent components (3 normal and 3 shear).

Remembering back now, it can be noted that a scalar quantity can 
be completely specified by 1 value and a vector by 3 values, but a 
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tensor requires 6 values. 

Whatever method is used to specify the stress state, 
there must be 6 independent pieces of information!!
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Principal StressesPrincipal Stresses

The actual values of the 6 stress components in 
the stress matrix for a given body subjected to 
loading will depend on the orientation of the 
cube in the body itself. 

If we rotate the cube, it should be possible 
to find the directions in which the normal 
stress components take on maximum and 
minimum values. It is found that in these 
directions the shear components on all faces 
of the cube become zero!

symmetry
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The principal stresses are defined as those 
normal components of stress that act on 
planes that have shear stress components 
with zero magnitude!

Example #1Example #1

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

Hint: Solve the problem graphically using a Mohr’s circle plot.

resultant stress state.

A. 
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Hudson & Harrison (1997)
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Example #1 (Solution) Example #1 (Solution) 

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. Step 1: Draw xy and lm axes for the first stress state, and 
then plot the corresponding Mohr circle.
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Example #1 (Solution)Example #1 (Solution)

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. The stresses transformed to the xy axes are then:

MPa
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Example #1 (Solution)Example #1 (Solution)

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. Step 2: Draw xy and lm axes for the second stress state, 
and then plot the corresponding Mohr circle.
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Example #1 (Solution)Example #1 (Solution)

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. The stresses transformed to the xy axes are then:

MPa
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Example #1 (Solution)Example #1 (Solution)

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. Step 3: Adding the two xy stress states gives

MPa
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Example #1 (Solution)Example #1 (Solution)

Q. Add the following 2-D stress 
states, and find the principal 
stresses and directions of the 
resultant stress state.

A. Step 4: Plotting the Mohr circle for the combined stress 
state and reading off the principal stresses and the principal 
directions gives the required values

1 = 37.4 MPa
2 = 27 6 MPa 
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2 = 27.6 MPa 

with 1 being rotated 19º 
clockwise from the x-
direction
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Example #2Example #2

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º

 8 MP  l i  27º t d  335º3 = 8 MPa, plunging 27º towards 335º

A. Perhaps before proceeding with this problem it would help to 

Find the 3-D stress tensor in the right-handed x-y-z
coordinate system with x horizontal to the east, y
horizontal to the north and z vertically upwards.
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review some matrix math.

Stress Transformation Stress Transformation –– Step 1 Step 1 

The matrix equation to conduct stress transformation is as follows:

… where the stress components are assumed known in the x-y-z
coordinate system and are required in another coordinate system l-
m-n inclined with respect to the first. 

The term l is the direction cosine of the angle between the x-axis 
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The term lx is the direction cosine of the angle between the x-axis 
and l-axis. Physically, it is the projection of a unit vector parallel 
to l on to the x-axis, with the other terms similarly defined.
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Stress Transformation Stress Transformation –– Step 2 Step 2 

Expanding this matrix equation in 
order to obtain expressions for 
the normal component of stress in 
the l-direction and shear on the the l-direction and shear on the 
l-face in the m-direction gives:

The other four necessary equations (i e  for   
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The other four necessary equations (i.e. for y, 
z, yz and zx) are found using cyclic 
permutation of the subscripts in the equations 
above.

Stress Transformation Stress Transformation –– Step 3 Step 3 

It is generally most convenient to refer to the orientation of a plane on 
which the components of stress are required using dip direction/dip angle 
notation (, ). The dip direction is measured clockwise bearing from 
North and the dip angle is measured downwards from the horizontal plane.

If we use a right-handed coordinate system with x = north, y = east and 
z = down, and take n as the normal to the desired plane, then:

And the rotation 
matrix becomes:
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Note that right-handed systems are always used for mathematical work. There 
are two obvious choices for a right-handed system of axes: x East, y North and 
z up; or x North, y East and z down. There are advantages to both, and so 
being adept with both is important. 
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Example #2 (Solution)Example #2 (Solution)
Q. A stress state has been measured where:

1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º

A. 

Find the 3-D stress tensor in the right-handed xyz co-ordinate 
system with x, horizontal to the east; y, horizontal to the north; 
and z, vertically upwards.

Step 1: The stress transformation equations are given by 
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which can be written as  lmn = RxyzRT

Example #2 (Solution)Example #2 (Solution)

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. 

Find the 3-D stress tensor (where x=east, y=north, z=up).
The equation lmn = RxyzRT means that, if we know the 
stresses relative to the xyz axes (i.e. xyz) and the 
orientation of the lmn axes relative to the xyz axes (i.e. R), 
we can then compute the stresses relative to the lmn axes 
(i.e. lmn). 
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However, in this problem we have been given the principal 
stresses, which is a stress state relative to some lmn system 
(i.e. lmn), where the lmn axes correspond to the principal 
directions. 
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Example #2 (Solution)Example #2 (Solution)

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. 

Find the 3-D stress tensor (where x=east, y=north, z=up).

As we know the principal directions relative to the xyz axes, 
we are able to compute R. Thus, we need to evaluate lxyz, 
and we do this using the inverse of the stress transformation 
equations: 
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xyz = RTlmnR

Notice that since the rotation matrix is orthogonal, we do not 
need to use the inverse of R, i.e. R-1, and thus R-1 = RT.

Example #2 (Solution)Example #2 (Solution)

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. Step 2: With the given data for 
the principal directions … 

Find the 3-D stress tensor.

… the matrix R is computed as:
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Example #2 (Solution)Example #2 (Solution)

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. Step 3: Since the matrix lmn is given by … 

Find the 3-D stress tensor (where x=east, y=north, z=up).
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… the 3-D stress tensor,  
xyz = RTlmnR solves as:

Example #2 (Solution)Example #2 (Solution)

Q. A stress state has been measured where:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. … or: if orientation and matrix values are not rounded, a 
more accurate answer may be obtained… 

Find the 3-D stress tensor (where x=east, y=north, z=up).

 the 3-D stress tensor   

30 of 79 Erik Eberhardt – UBC Geological Engineering                EOSC 433

… the 3-D stress tensor,  
xyz = RTlmnR then solves 
more exactly as:
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Example #3Example #3

Q. For our previously given rock mass with the stress state:
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º3  8 MPa, plunging 27  towards 335

A. 

… a fault has been mapped with an orientation of 295º/50º. 
Determine the stress components in a local coordinate system 
aligned with the fault. Assume for this question that the 
presence of the fault does not affect the stress field.

Hint: Here we use the same methodology to find the 3-D 
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stress tensor in an lmn coordinate system where the n-axis 
coincides with the normal to the fault and the l-axis 
coincides with the strike of the fault.

Example #3 (Solution)Example #3 (Solution)
Q. Determine the stress components in a local coordinate system 

aligned with the fault.
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º
fault orientation = 295º/50º.

A. Step 1: We therefore need to determine lmn, where lmn are 
given by the orientation of the fault. With the l-axis parallel 
to the strike of the plane and the n-axis normal to the 
plane, the m-axis becomes the dip. The tend and plunge of 
each axes are then as follows:
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each axes are then as follows
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Example #3 (Solution)Example #3 (Solution)
Q. Determine the stress components in a local coordinate system 

aligned with the fault.
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º
fault orientation = 295º/50º.

A. Step 2: The matrix R, then computes as:
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Example #3 (Solution)Example #3 (Solution)
Q. Determine the stress components in a local coordinate system 

aligned with the fault.
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º
fault orientation = 295º/50º.

A. Step 3: From Q #2, the matrix xyz is:
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Step 4: As a result, the 
matrix lmn = RxyzRT, the 
solution to which is:
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Example #3 (Solution)Example #3 (Solution)
Q. Determine the stress components in a local coordinate system 

aligned with the fault.
1 = 15 MPa, plunging 35º towards 085º
2 = 10 MPa, plunging 43º towards 217º
3 = 8 MPa, plunging 27º towards 335º
fault orientation = 295º/50º.

A. … or: if orientation and matrix values are not rounded, a 
more accurate answer may be obtained. the 3-D stress 
tensor, lmn = RxyzRT then solves more exactly as:
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Example #4Example #4

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa

 16 1 MP  2 1 MPzz = 16.1 MPa xz = -2.1 MPa

A. Before proceeding with this problem, we must define the 
invariants of stress.

Determine the principal stresses and their direction cosines.
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Stress Invariants Stress Invariants –– Step 1 Step 1 

When the stress tensor is expressed with reference to sets of 
axes oriented in different directions, the components of the tensor 
change. However, certain functions of the components do not 
h  Th   k   t  i i t  d  I  I  change. These are known as stress invariants, expressed as I1, I2, 

I3, where:

The expression for the first invariant  I  indicates that for a 
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The expression for the first invariant, I1, indicates that for a 
given stress state, whatever its orientation, the values of the 
three normal stresses will add up to the same value I1.

Stress Invariants Stress Invariants –– Step 2 Step 2 

When the principal stresses have to be calculated from the 
components of the stress tensor, a cubic equation can be used for 
finding the three values 1, 2, 3:

Because the values of the principal stresses must be independent of 
the choice of axes, the coefficients I1, I2, I3 must be invariant 
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with respect to the orientation of the axes. It can also be noted 
from the first invariant that:

I1 = xx + yy + zz =  1 + 2 + 3
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Stress Invariants Stress Invariants –– Step 3Step 3
Each principal stress is related to a principal stress axis, whose 
direction cosines can be obtained, for example for 1, through a 
set of simultaneous, homogeneous equations in x1, y1 , z1, based 
on the dot product theorem of vector analysis:

Where:
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Substituting for x1, y1 , z1
in the dot product relation 
for any unit vector gives:

Brady & Brown (1993)

Stress Invariants Stress Invariants –– Step 4Step 4
Proceeding in a similar way, the vectors of direction cosines for the 
intermediate and minor principal stresses axes, i.e. (x2, y2 , z2) 
and (x3, y3 , z3) are obtained by repeating the calculations but 
substituting 2 and 3.

Where:
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Where:
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Stress Invariants Stress Invariants –– Step 5Step 5

The procedure for calculating the principal stresses and the 
orientations of the principal stress axes is simply the determination 
of the eigenvalues of the stress matrix, and the eigenvector for 
each eigenvalue. Thus, some simple checks can be performed to each eigenvalue. Thus, some simple checks can be performed to 
assess the correctness of the solution:

The condition of orthogonality requires that 
each of the three dot products of the vectors 
of the direction cosines must vanish:

Invariance of the sum of the 
normal stresses requires that:
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Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Step 1: Solving the stress invariants we get:

I1 = xx + yy + zz = 14.0 + 34.8 + 16.1 = 64.9 MPa

I2 = xxyy + yyzz + zzxx – xy
2 – yz

2 – zx
2

= (14.0)(34.8) + (34.8)(16.1) + (16.1)(14.0) – (-0.6)2 – (6.0)2 – (-2.1)2
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( )( ) ( )( ) ( )( ) ( ) ( ) ( )
= 1232.1 MPa

I3 = xxyyzz + 2xyyzzx – xxyz
2 – yyzx

2 – zzxy
2

= (14.0)(34.8)(16.1) + 2(-0.6)(6.0)(-2.1) – (14.0)(6.0)2 – (34.8)(-2.1)2 – (16.1)(-0.6)2

= 7195.8 MPa
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Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Step 2: Substituting these values into the cubic equation we 
get:

3 - I12 + I2 - I3 = 0

3 - 64.92 + 1232.1 - 7195.8 = 0
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Step 3: Solving the cubic equation gives:  =           MPa
















3.12

0.16

6.36

Thus: 1 = 36.6 MPa   2 = 16.0 MPa   3 = 12.3 MPa  

Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Step 4: Obtain the direction cosines (direction 1) by first 
solving for the determinates: 

6.361.16

0.6

0.6

6.368.34




A = 0.90
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6.361.16

0.6

1.2

6.0






0.6

6.368.34

1.2

6.0 



B = -24.90

C = -7.38
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Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Step 5: Substituting the determinates into the equations for 
the direction cosines for 1 gives: 

       035.0
38.790.2490.0

90.0
5.02221 


x
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      

       958.0
38.790.2490.0

90.24
5.02221 


y

       284.0
38.790.2490.0

38.7
5.02221 


z

Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Step 6: Repeating for 2 and 3 , gives the direction cosines: 

x2 = -0.668
y2 = -0.246
 0 702

x3 = 0.741
y3 = -0.154
 0 653
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z2 = 0.702 z3 = 0.653
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Example #4 (Solution)Example #4 (Solution)

Q. Six components of stress are measured at a point:
xx = 14.0 MPa xy = -0.6 MPa
yy = 34.8 MPa yz = 6.0 MPa
zz = 16.1 MPa xz = -2.1 MPazz  16.1 MPa xz  2.1 MPa

A. 

Determine the principal stresses and their direction cosines.

Thus:

x1 = 0.035

1 = 36.6 MPa

x2 = -0.668

2 = 16.0 MPa

x3 = 0.741

3 = 12.3 MPa
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x1 

y1 = -0.958
z1 = -0.284

x2 

y2 = -0.246
z2 = 0.702

x3 

y3 = -0.154
z3 = 0.653

StrainStrain
Strain is a change in the relative 
configuration of points within a 
solid. One can study finite strain or 
infinitesimal strain – both are 

l t t  th  d f ti  th t relevant to the deformations that 
occur in the context of stressed 
rock.

Large-scale strain is experienced 
when severe deformations occur. 
When such displacements are very 
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small, one can utilize the concept 
of infinitesimal strain and develop 
a strain tensor analogous to the 
stress tensor.
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FiniteFinite--StrainStrain

Strains may be regarded as normalized displacements. If a 
structure is subjected to a stress state, it will deform. However, 
the magnitude of the deformation is dependent on the size of the 
structure as well as the magnitude of the stress applied. In order 
to render the displacement a scale-independent parameter, the 
concept of strain is utilized.

in its simplest form, 
strain is the ratio of 

Strain
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strain is the ratio of 
displacement to the 
undeformed length.

Hudson & Harrison (1997)

FiniteFinite--StrainStrain

It should be noted that strain is a 3-D phenomenon that requires 
reference to all three Cartesian coordinate axes. However, it is 
instructive to start with 2-D strain, and then once the basic 
concepts have been introduced, 3-D strain follows as a natural concepts have been introduced, 3 D strain follows as a natural 
progression.

It is easier to grasp the 
concept of normal strain than 
shear strain. This is because 
the normal displacement and 
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p
the associated strain occur 
along one axis. In the case of 
shear strain, the quantity of 
strain involves an interaction 
between two (or three) axes.

Hudson & Harrison (1997)
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Homogeneous FiniteHomogeneous Finite--StrainStrain

One convenient simplification that can be introduced is the concept 
of homogeneous strain which occurs when the state of strain is the 
same throughout the solid (i.e. straight lines remain straight, 
circles are deformed into ellipses, etc.). circles are deformed into ellipses, etc.). 

… in each of the examples, 
equations are given 
relating new positions (e.g. 
x´) in terms of their 
original positions (e.g. x). 
Th  ffi i t  k d 
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The coefficients k and 
indicate the magnitudes of 
the normal and shear 
strains, respectively.

Hudson & Harrison (1997)

Homogeneous FiniteHomogeneous Finite--StrainStrain
During geological history, a rock mass may experience successive 
phases of deformation. Thus, in decoding such compound 
deformation into its constituent parts, we need to know whether 
strain phases are commutative, i.e. if there are two deformation 
phases  A and B  is the final result of A followed by B the same phases, A and B, is the final result of A followed by B the same 
as B followed by A?   

… the answer is generally NO! 
The final state of strain is 
dependent on the straining 
sequence in those 
i t  h  h  
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circumstances where shear 
strains are involved. This can 
be seen in the off-diagonal 
terms in the strain matrix.

Hudson & Harrison (1997)



27

Infinitesimal StrainInfinitesimal Strain

Infinitesimal strain is homogeneous strain over a vanishingly small 
element of a finite strained body. To find the components of the 
strain matrix, we need to consider the variation in coordinates of 
the ends of an imaginary line inside a body as the body is the ends of an imaginary line inside a body as the body is 
strained.   

… the point P with coordinates 
(x,y,z) moves when the body 
is strained, to a point P* with 
coordinates (x+ux, y+uy, 
z+uz). The components of 

t  d   
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movement ux, uy and uz, may 
vary with location within the 
body, and so are regarded as 
functions of x, y and z. 

Hudson & Harrison (1997)

Infinitesimal StrainInfinitesimal Strain

… similarly, the point Q 
(which is a small distance 
from P)  with coordinates from P), with coordinates 
(x+x, y+y, z+z), is 
strained to Q* which has 
coordinates (x+x+ux*, 
y+y+uy*, z+z+uz*).
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If we now consider holding P in a constant position and Q being 
strained to Q*, the normal and shear components of strain can 
be isolated. 
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Infinitesimal StrainInfinitesimal Strain

The infinitesimal longitudinal strain can now be considered in the 
x-direction. Because strain is ‘normalized displacement’, if it is 
assumed that ux is a function of x only, then:    

Considering similar deformations in the y- and z-directions, the 
normal components of strain can be generated.    
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Hudson & Harrison (1997)

Infinitesimal StrainInfinitesimal Strain
Derivation of the expressions for the shear strains follows a 
similar course, except that instead of assuming that simple shear 
occurs parallel to one of the coordinate axes, the assumption is 
made initially that shear strain (expressed as a change in angle) is 
equally distributed between both coordinate axes  i e  du=du if equally distributed between both coordinate axes, i.e. du=duy if 
dx=dy.    
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… it should be noted that the term xy, i.e. 2, is known as the 
engineering shear strain, whereas the term xy/2, i.e. , is known 
as the tensorial shear strain. It is the tensorial shear strain that 
appears as the off-diagonal components in the strain matrix.     
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The Strain TensorThe Strain Tensor

By combining the longitudinal and shear strain components, we can 
now present the complete strain tensor – which is a second order 
tensor directly analogous to the stress tensor.     

… note that this matrix is symmetrical and hence 
has six independent components- with its 
properties being the same as the stress matrix 
(because they are both second-order tensors).

… for example, at an orientation of the 
infinitesimal cube for which there are no shear 
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strains, we have principal values as the three 
leading diagonal strain components. 

The Strain TensorThe Strain Tensor

The strain component transformation equations are also directly 
analogous to the stress transformation equations and so the Mohr’s 
circle representation can be utilized directly for relating normal 
and shear strains on planes at different orientations.    
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Hudson & Harrison (1997)



30

Example #5Example #5

Q. Assume that strains measured by a strain gauge 
rosette are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, 
and that the gauges make the following angles to the 
x-direction: P=20º, Q=80º and R=140º. Determine Q
the principal strains and their orientations.

A. In order to use the strain transformation equations to 
determine the 2-D state of strain from measurements 
made with strain gauges, we firstly determine the angle 
each gauge makes to the x-axis: say, for gauges P, Q 
and R  these are    and   The strains measured by 
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and R, these are P, Q,and R. The strains measured by 
the gauges are P, Q and R. 

Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge 
rosette are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, 
and that the gauges make the following angles to the 
x-direction: P=20º, Q=80º and R=140º. Determine Q
the principal strains and their orientations.

A. Step 1: Remembering our stress transformation equation:

we can derive our strain transformation equations in the same way. 
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Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge 
rosette are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, 
and that the gauges make the following angles to the 
x-direction: P=20º, Q=80º and R=140º. Determine Q
the principal strains and their orientations.

A. In doing so, the 2-D strain 
transformation equation linking each 
of the measured strains P, Q and 
R to the 2-D strains  x, y and xy
are:
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or, in matrix form:

Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge 
rosette are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, 
and that the gauges make the following angles to the 
x-direction: P=20º, Q=80º and R=140º. Determine Q
the principal strains and their orientations.

A. Step 2: We invert these equations to find the strains x, y
and xy, as
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The solution to the problem can then be found by solving 
the matrix where we have P=20º, Q=80º and R=140º.
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Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge 
rosette are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, 
and that the gauges make the following angles to the 
x-direction: P=20º, Q=80º and R=140º. Determine Q
the principal strains and their orientations.

A. 
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Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge rosette 
are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, and that the 
gauges make the following angles to the x-direction: P=20º, 
Q=80º and R=140º. Determine the principal strains and 
their orientationstheir orientations.

A. Step 3: Because our problem is 
restricted to a 2-D plane, we 
can solve for the principal strains 
using a Mohr circle construction. 

 &
 H

ar
ri

so
n 

(1
99

7)
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From the Mohr circle, we also obtain a 
mathematical relationship for the angle 
of the principal strain.

H
ud

so
n 
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Example #5 (Solution)Example #5 (Solution)

Q. Assume that strains measured by a strain gauge rosette 
are P=43.0e-6, Q=7.8e-6 and R=17.0e-6, and that the 
gauges make the following angles to the x-direction: P=20º, 
Q=80º and R=140º. Determine the principal strains and 
their orientationstheir orientations.

A. Step 4: Remembering: 

    
     5.022

2

5.022
1

25.05.0

25.05.0 xyyyxxyyxx








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Solving, we calculate 1 = 43.7e-6
and 2 = 1.52e-6, with the angle 
between the x-direction and the 
major principal strain being 12.7º.

    2 25.05.0 xyyyxxyyxx  

The Elastic Compliance MatrixThe Elastic Compliance Matrix

Given the mathematical similarities between the structure of the 
strain matrix with that of the stress matrix, it may seem fitting 
to find a means to link the two matrices together. Clearly, this 
would be of great benefit for engineering, because we would be 
able to predict either the strains (and associated displacements) 
from a knowledge of the applied stresses or vice versa.   

A simple way to begin would be to assume that each component of 
the strain tensor is a linear combination of all the components of 
the stress tensor, i.e. each stress component contributes to the 
magnitude of each strain component. For example, in the case of 
the  component  we can express this relation as:
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the xx component, we can express this relation as:
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The Elastic Compliance MatrixThe Elastic Compliance Matrix

Because there are six independent components of the strain 
matrix, there will be six equations of this type. If we considered 
that the strain in the x-direction were only due to stress in the 
x-direction  the previous equation would reduce to:x-direction, the previous equation would reduce to:

or:

The theory of elasticity  in the 
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The theory of elasticity, in the 
form of the generalized Hooke’s 
Law, relates all the components 
of the strain matrix to all the 
components of the stress matrix.

The Elastic Compliance MatrixThe Elastic Compliance Matrix

It is not necessary to write these equations in full. An accepted 
convention is to use matrix notation:

The [S] matrix is known as the compliance matrix. In general, the 
hi h  th  it d  f  ifi  l t i  thi  t i  th  
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higher the magnitudes of a specific element in this matrix, the 
greater will be the contribution to the strain, representing an 
increasingly compliant material. ‘Compliance’ is a form of 
‘flexibility’, and is the inverse of ‘stiffness’.
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The Elastic Compliance MatrixThe Elastic Compliance Matrix
The compliance matrix contains 36 elements, but through 
considerations of conservation of energy, is symmetrical. 
Therefore, in the context that each strain component is a linear 
combination of the six stress components, we need 21 independent 
l ti  t t t  l t l  h t i   t i l th t f ll  elastic constants to completely characterize a material that follows 

the generalized Hooke’s law.

It is necessary, for 
practical applications, to 
consider to what extent we 
can reduce the number of 
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can reduce the number of 
non-zero elements of the 
matrix.

Hudson & Harrison (1997)

The Elastic Compliance MatrixThe Elastic Compliance Matrix

For typical engineering 
materials, there will be non-
zero terms along the leading 
di l b  l it di l diagonal because longitudinal 
stresses must lead to 
longitudinal strains and shear 
stresses must lead to shear 
strains.

The isotropy of the material is directly specified by the interaction 
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The isotropy of the material is directly specified by the interaction 
terms, i.e. whether a normal or shear strain may result from a 
shear or normal stress, respectively.
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The Elastic Compliance Matrix The Elastic Compliance Matrix -- IsotropyIsotropy

For example, omitting all shear 
linkages not on the leading diagonal 
– which means assuming that any 
contributions made by shearing contributions made by shearing 
stress components in a given 
direction to normal or shear strain 
components in other directions are 
negligible – causes all off-diagonal 
shear linkages to become zero.

The compliance matrix then 
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The compliance matrix then 
reduces to one with nine material 
properties, which is the case for 
an orthotropic material.

The Elastic Compliance MatrixThe Elastic Compliance Matrix
We can reduce the elastic compliance matrix even 
further by considering the case of transverse isotropy. 
This is manifested by a rock mass with a laminated 
fabric or one set of parallel discontinuities. In the case 
h  th  l  f i t  i  ll l t  th  l  when the plane of isotropy is parallel to the plane 

containing Cartesian axes 1 and 2, we can say that: 
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… thus, the number of 
independent elastic constants 
for a transversely isotropic 
material is five. 
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The Elastic Compliance Matrix The Elastic Compliance Matrix -- IsotropyIsotropy

The final reduction that can be made 
to the compliance matrix is to assume 
complete isotropy, where:

Note that, because we now have 
complete isotropy, the subscripts 
can be dispensed with, the shear 
modulus G is implicit and the factor 
1/E is common to all terms and can 
b  b ht t id  th  t i  
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be brought outside the matrix. 
This ultimate reduction results in 
two elastic constants for the case 
of a perfectly isotropic material.

The Elastic Compliance Matrix The Elastic Compliance Matrix -- IsotropyIsotropy
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… typical isotropy assumptions used for rock.

Hudson & Harrison (1997)
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Example #6Example #6

Q. For the strains found in the previous problem, and 
using values for the elastic constants of E = 150 GPa 
and  = 0.30, determine the principal stresses and 
th i  i t titheir orientations.

A. Step 1: Remembering back to the previous example, in ‘Step 2’ we 
had inverted the strain transformation matrix to find the strains x, 
y and xy:
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Example #6 (solution)Example #6 (solution)

Q. For the principal strains found in the previous 
problem, and using values for the elastic constants of 
E = 150 GPa and  = 0.30, determine the principal 
t  d th i  i t tistresses and their orientations.

A. Step 2: To compute the stress state from the strain state we use 
the stress-strain relations for an isotropic material, i.e.:
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Which when inverted gives:

_

_
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Example #6 (Solution)Example #6 (Solution)

Q. For the principal strains found in the previous 
problem, and using values for the elastic constants of 
E = 150 GPa and  = 0.30, determine the principal 
t  d th i  i t tistresses and their orientations.

A. Step 3: Solving

gives x = 7.04 MPa
y = 2.65 MPa
xy = 1 04 MPa

_
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xy  1.04 MPa_

Example #6 (Solution)Example #6 (Solution)

Q. For the principal strains found in the previous 
problem, and using values for the elastic constants of 
E = 150 GPa and  = 0.30, determine the principal 
t  d th i  i t tistresses and their orientations.

A. 
Step 4: Similar to our Mohr 
circle construction for the 
principal strains, we can solve 
for the 2-D principal stresses, 
where:
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Example #6 (Solution)Example #6 (Solution)

Q. For the principal strains found in the previous 
problem, and using values for the elastic constants of 
E = 150 GPa and  = 0.30, determine the principal 
t  d th i  i t tistresses and their orientations.

A. Computing the principal stresses and their orientations from 
these values gives 1 = 7.28 MPa and 2 = 2.41 MPa, with 
the angle between the x-direction and the major principal 
stress being 12.7º.
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Notice that because this is an isotropic material, the 
orientations of the principal stresses and the principal strains 
are identical.


