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Disclaimer before beginning your problem assignment:

Pick up and compare any set of textbooks on rock mechanics, soil
mechanics or solid mechanics, and you will find that the discussion on
Mohr Circles, stress-strain analysis, matrix math, etc., either uses
different conventions or contains a typo that will throw your calculations
off. Clockwise is positive, clockwise is negative, mathematical shear
strain, engineering shear strain.. It all seems rather confusing.

But instead of becoming frustrated or condemning the proof-reader of a
given textbook (or these notes), I like to look at it as a good lesson in not
relying 100% on something, especially at the expense of your judgement.
The notes that follow come from several sources and I have tried to
eliminate the errors when I find them. However, when using these notes
to complete your problem assignment, try to also use your judgement as to
whether the answer you obtain makes sense. If not, consult a different
source to double check to see if there was an error.

On that note, if you find an error and/or a source that you would
recommend as having given you a clearer understanding of a particular
calculation, please let me know.
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ncleinstamd.inq..Stress...

* Sfress is not falm//ar'. itisa fensor' quanf/ry and tensors are |
- ”af eﬂcounfel'edlﬂ evy yllf ;;;;;;; St

mathematically, between a tensor

There i is a fundamentéxl 1iffe:r'er5|_¢_:_e’, both conce

of scalars and vecfor$=

Scalar: a cuahﬁ-‘y with magnitude o ; , ss).
: ‘v'ec?ér'- a-quantity wif'n nagnitude nd direction-(e:g: force; velocity;
o acceleration). i T PN N RIS A P
___Tensor: a quantity with magnitude and direction, and with reference to
..aplane it is acting across (e.g. stress, strain, permeability). = = |
Both mqrhemaﬂc al and engineering mistal es are easily made if this
crucial di Ter'ence is not recognized anl Uﬁder stood. : :
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The Stress Tensor ;
,,,,, The second-order fensor Wthh we waII be examining has:
N ; P ! ; :
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Tor | oy Taz | _
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,,,,,,, ...-.9 components of which 6 are |ndependen'r

~.....= values which are point properties;

. - 6 of the 9 components becoming zero at a particular orientation;

. - three principal components;

- - complex data reduction requirements be

cannot, in general, be averaged by aver

cause two or more tensors
aging the respective principal

.- values which depend on orientation relative to a se‘r of reference axes;
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Components of Stress

On.a real or imaginary plane through a material, there can be
normal forces and shear forces. These forces create the stress
tensor. The normal and shear stress components are the normal
and shear forces per. unit area.

Boundary
l . conditions

It should be remembered that a solid can sustain a shear force,
whereas a liquid or gas cannot. A liquid or gas contains a pressure,
which acts equally in all directions and hence is a scalar quantity.
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Force and Stress

The reason for this is that
it is only-the force that-is
resolved in the first case
(i_e' VeC"'or‘)l whel"eqsl it is | normal stress = Feos 6/(A/cos6) = (F/A) c05°0 =0y cos’0
both the force and the area | Resultantacts over this arca

that are resolved in the

On acts over this area, A normal stress = force/area, Op = F/A

case of stress (i.e. tensor).

In fact, the strict definition of a
second-order . tensor is a quantity. that
obeys certain transformation laws as the
planes in question are rotated. This is
why the conceptualization of the stress oy
tensor utilizes the idea of magnitude, o

direction and “the plane in question”. \’
N.

~ " 4"?:-‘

ik pa e

Hudson & Harrison (1997)
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Stress as a Point Property

Because the acting forces will vary aA
according to the orientation of AA within /
the slice, it is most useful to consider the
normal stress (AN/AA). and the shear
stress (AS/AA) as the area AA becomes
very small, eventually approaching zero.

AN

'AS

(b)

A
normal stress, ¢, = lim AN shear stress, 7= lim A

A4-0 AA A0 AA

Although there are practical limitations in reducing the size of
the area to zero, it is important to realize that the stress
components are defined in this way as mathematical
quantities, with the result that stress is a point property.

— [ 7079 Erik Eberhardt - UBC Geological Engineering EOSC 433

Stress Components on an Infinitesimal Cube

For convenience, the shear and normal components of stress may be
resolved with reference to a given set of axes, usually a
rectangular Cartesian x-y-z system. In this case, the body can be
considered to be cut at three orientations corresponding to the
visible faces of a cube.

Ozz

Normal stress \ i >
Tx T‘z =2V ~
Shear stress 1 = &
Tyz ‘[xy \l g
+ = = [f e
T, =
/ Tyx * g
e 5
Right handed £ (middle finger) » ¢ 5
co-ordinate ¥ (forefinger) G, 2
system X (thumb) “ g
=)
x

To determine all-the stress-components,-we consider-the normal
and shear stresses on all three planes of this infinitesimal cube.
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Stress Tensor Conventions

Thus, we arrive at 9 stress components comprised of 3

6 shear components.

Right-handed f (middle finger)
co-ordinate T/ ¥ (forefinger) Tyy
> x (thumb) ’

system

Dircct stress

~.
o,

Shear stress

Acting on a
plane normal
xx =— to the x-axis

Acting on a
" planc normal
XY\ to the x-axis

\
\

Acting in the

y-direction

normal and

In the stress matrix

s Ty = Ty

Leading diagonal

Hudson & Harrison (1997).

The standard convention for denoting these components
is that the first subscript refers to the plane on which
the stress component acts, and the second subscript

denotes the direction in which it acts.

For normal stresses, compression is positive. For shear
stresses, positive stresses act in positive directions on
negative faces (a negative face is one in which the outward
normal to the face points in the negative direction).

— [ 9079
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Stress Components on a Cube

Ozz
Normal stress Oyy
TU‘ TT 1/ /
J{ Shear stress e
/ e Tyz Tay J
— O —> F <—0q
|7 Tz
—_—
Right-handed z (middle finger) Oyy 4\
°°'°“t"“‘“e ¥ (forefinger) os Geotechnical Engineering
system Z H .
e * (thumb) | -Right-hand systems
' -Compression positive
-Tension negative
|
Owx | Ty _Txz | __ The components in a row are the components acting
| on a plane; for the first row, the plane on which o,
Tyx | Oyy  Tye acts
! .
Tex I Ty Oz
|

The components in a column are the components acting in one
direction; for the first column, the x direction.

Hudson & Harrison (1997)
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Symmetry in the Stress Matrix

Although we arrive at 9 stress components in

the [stress matrix, we can assume that the
body is in equilibrium. By inspecting the
equilibrium of forces at a point in terms of
these 9 stress components, we can see that
for there to be a resultant moment of zero,
then the shear stresses opposite from one
another must be equal in magnitude.

o

"
[ v

In the stress matrix

Thus, by considering moment Ty =T

i Ty =Tgy
equilibrium around the x, y and z il
axes, we find that:

TXY = TYx TYZ = TZ‘/ Txz—=Tzx Leading diagonal
—>|Z|<— 11 of 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433
Symmetry in the Stress Matrix
In the stress matrix

If-we-consider-the-stress-matrix To b

again, we find that it is
symmetrical about the leading
diagonal.

It is clear then that the state of stress at a point is defined
completely by six independent components (3 normal and 3 shear).

Remembering back now, it can be noted that a scalar quantity can
be completely specified by 1 value and a vector by 3 values, but a

requires

Whatever method is used to specify the stress state,
there must be 6 independent pieces of information!!

—>|Z,<— 12 of 79

Erik Eberhardt:- UBC :Geological :Engineering

EOSC 433




Principal Stresses

The actual values of the 6 stress components in
the stress matrix for a given body subjected to
loading will depend on the orientation of the

cube in the body itself.

If we rotate the cube, it should be possible
to find the directions in which the normal
stress components take on maximum and

minimum values. It is found that in these
directions the shear components on all faces
of the cube become zerol

The principal stresses are defined as those

normal components of stress that act on or 00

planes that have shear stress components o2 0

with zero magnitudel 0 o3
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Example #1

Q. /Add the following 2-D stress 30% ,\/ _tsups
states, and find the principal {/ \ZMpa
stresses and directions of the Xy / ™S e 7
resultant stress state. ol e ;\MPZ

A——Hint:

3 .
Shear stres$, T__ _ _ _
-T : Oy Try) !

incipyl stress, 07,
N A== m =
1
+

O+ Toy) |
T :_(xxv Xy)l

’ a, o
& iﬁfxy Principal stress, O,
o. > |
= \.
1T,
+’L'Xy/ 4\ w

Normal stress,C

| positive shear stresses plot below the o-axis. ]l

Hudson & Harrison (1997)
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Example #1 (Solution)

Q. Add the following 2-D stress
states;, and find the principal
stresses and directions of the
resultant-stress-state.

309\ /
~ S o~ 15MPa
// / \ \2 MPa
5 l\%a ‘E) MPa 7
10 MPa %0

A.|Stepl:
Shear stress, - T
-10.0 ﬂ:lL
/ A A 0,1, = 10,050
N /'\\ J 5.0
) ; c,“xw =21.83,-1.83
// S0 0 /(:N
VAN <
/ SMpa  20MPa 50 \/IW 50 300 Normal stress, &
10MPa =8.47,-1 83
5.0 =20.0,50

10.0

—[ < 150£79
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Example #1 (Solution)

30° /

Q. Add the following 2-D stress < \,\ s
states, and find the principal //\7 /\\\QMF,a
stresses and directions of the S \y/
resultant stress state. mM{a SHPe v ;\Mpa

A. |The stresses transformed to the xy axes are then:

Shear stress, - T

-10.0

-5.0

\ a1, = 21.83,-1.83
A

50 \1ee ") 250
0,1,=8.17,-1.83

6,5, =20.0,5.0

300 Normal stress, &

21.83
—1.83

—1.83
} :MPa
8.17
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Example #1 (Solution)

Q: Add the following 2-D stress ~7 N\/ \ _tsups
states, and find the principal WP
stresses and directions of the /./ ™S e \
resultant stress state. o w7 N

A. Step 2:

\/\ _ o S}-):a; siress, -t ;DL
\ m\ ! x
/vz"’"’a NP | 0,1y = 1452, 117, 60 «\m,r,m=2:;oo,2.o o
0 { ) | - —
\20 . 4 50 0“11:215-0’ 2% ) /Gy,1w=20.48, 447  Normal stress, o
50
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Example #1 (Solution)
30° /

Q. Add the following 2-D stress < \,\ _15hPa
states, and find the principal //\7 /\\\M,a
stresses and directions of the S \y/
resultant stress state. mM{a SHPe v ;\Mpa

A |The stresses transformed to the xy axes are then:

Shear stress, -t

-5.0

O = 20.0, 2.0

14.52

G,1, = 14.52, -1.17, 60%
. & .

25.0

30.0

‘ 10.0
1 0T = 15.0, 2

50
|

}
S{ /Lc Ty = 20.48, -1.17 Nnrmal strew <

: -1.17
[ J :MPa
—1.17 2048

— < 18079
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esultant stress st

\/15MPa
2 MPa T

2p 3: Adding the fwo xy st

21.83 —-1.83
) +
—1.83 8.17

3635 —3.00
~300 28.65

1452 —1.17
—1.17 2048

19 of 79

Add the follg

T ;csseﬁ;’"ﬂ:ﬂd -di

‘| resultant stress s

\:/15 MPa | |
2 MPa

4: Plotting

state and read

directions gives

Shear Stross, -7

50 100 150

200f 79 Eri




Example #2

Q. |A stress state has been measured where:

oy = 15 MPa, plunging 35° towards 085° | ristctndea g mitte/neey
6, = 10 MPa, plunging 43° towards 217° | “un L ety
o3 = 8 MPa, plunging 27° towards 335°

Find the 3-D stress tensor in the right-handed x-y-z
coordinate system with x horizontal to the east, y
horizontal to the north and z vertically upwards.
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Stress Transformation - Step 1

Thel-matrix equation to conduct stress transformation is as follows:

o T Ty Iy l ¥ [ Oy Tyy Tax L, me n,
Tm Om Tam | = [Mx my m || Ty 0y Ty ||l my ny
Tn  Tmn On ny ny  nH Tag Ty O I, m; n;

= where-the stress components are assumed-known:in the x-y-z
coordinate system and-are required-in-another coordinate system/-
m-n inclined with respect to the first.

The term / is the direction cosine of the angle between the x-axis
and /-axis. Physically, it is the projection of a unit vector parallel
to /on to the x-axis, with the other terms similarly defined.

—)IZ,(— 22 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC 433
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Stress Transformation - Step 2

Expanding this matrix equation in

order to obtain expressions for L U | RS

the normal component of stress in |™ ™ ™|7|™ ™ ™|/% ® L m o

the /-direction and on the
in the gives:

T Tmn  Ta T T O || omeom

o =10 + Z;Uyy + 120y, + 204,04y + 110y, + L1i0y0)
Ot = lxMxOxx + LyMyGyy + LM 04 + (LxMy + Ly ) Oy +

(lymz + lzmy) Oy, + (Umy +1imy) 0y

The other four necessary equations (i.e. for oy,

Oy Tyz aqd T5x) are found using cyclic ' ﬂx\ ! \A

permutation of the subscripts in the equations : 0y

above. == =
—>|Z|<— 23 of 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433

Stress Transformation - Step 3

It is generally most convenient to refer: to the orientation of a plane on
which the components_of stress-are required-using dip-direction/dip angle
notation (&, B). The dip direction is measured clockwise bearing from
North and the dip angle is measured downwards from the horizontal plane.

If we use a right-handed coordinate system with x = north, y = east and
Z =|down, and take 7 as the normal to the desired plane, then:

N, = CO8 A, COS B, 1, = sina, €os B; n, = sin f,.

And the rotation Lo, cosogcos By sinegcos B singy
matrix becomes: m; my, m;|=|cosa,cosp, sina,cosf, sinf,
n, n, ng cosw, cos B, sina,cosf, sinf,

Note that right-handed systems are always used for mathematical work. There
are two obvious choices for a right-handed system of axes: x East, y North and
zup; or x North, y East and z down. There are advantages to both, and so
being adept with both is important.

—)IZ,(— 24 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC 433
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. Example #2 (Solution)

Q. A si‘tr‘ess state has been measured vahere

12 ) D 1 o J Q :
-------- & --q—l--s-ts-Mr' . plunging 35 fowards 085
G,-=-10 MPa, plunging 43° towards 217°-
: o358 MPa, plunging 27° towards 335° :
' |Find the 3-D stress tensor in the right-handed xyz co-ordinate
4 Lo 4

. ol S .l [ e .
..ys:Terrfwn'n h rizontal to “the eastv; y, 'nqu ontal To the nor th;

Gﬂd_Z‘_Vél 1';t.u =y upwﬂl"'ds3

"A-TStep 11 The stress transformation equations are given by

T Tmt Tw Iy '!ly Iy Ox  Tyx T I, me n
TUm  Om Tam | = [ my mg || T, oy Ty ||l my ny
.................... Tin Tin Ty ny fl). n; Tap ryz a, Iz m;  n;

an be written as g, = Ro,

G, = 15 MPa; plunging
: = [ ihg; 43
D

'

' plyngihfg' 27°

L : : :
; Ro,:RT-means that; if we know-the -
A k"n AT AN - and.-+he....:
TN CAYyL .ll\c.) L) UXVZ’ ul!u e N
: axes<--relatiy 4 (i )
axes 1avt xXes-(I.¢e ).

-the stresses relativ

_........However, .in this problem we have been. given the principal | ... . .
: stresses, .which is_d stress state relative to some /nn system

: where: the Imn_dxes corre pond_t the pr-in:rirnl’
ciediregtions. L

—>[/J«— 26079 Erik Eberhardt - UBC Geological Engineering . . . EQSC433..




‘Example #2 (Solution)

A stress state has been measured where:

. y H

" A
T, WE 10

Oy =
Gy =

C3 =

Find the 3-D stress tensor. ; Q ;

“A. | Step 2: With the given data for | @ =85 an=217 o, =335 ]
the principal directions § B =35 Bn=43 B, =27 |

- ;'rha matrix R |s computed cs:é

coswcosB;  singgcosf;  sinfy 0.071 0816 0574 | - ooioon
: R=|cosa,cosB, sina,cosB, sinf,|=|-0584 —0440 0.682 :
coswy, cos B, sinw,cosB, sinf, 0.808 —0.377 0454

| —>[J«— 280f 79 Erik Eberhardt - UBC Geological Engineering . . . . EOSC 433




Example #2 (Solution)

Q. A stress state has been measured where:

6, = 15 MPa, plunging 35° towards 085°
6, = 10 MPa, plunging 43° towards 217°
65 = 8 MPa, plunging 27° towards 335°

Find the 3-D stress tensor (where x=east, y=north, z=up).

15 0 0
A. | Step 3: Ol mm—[o 10 OJ MPa

0o 0 8

8.70 101 -044
T Oy = | 1.01  13.06 2.65 | MPa.
o'xyz =R O-/mr)2

—-0.44 265 11.23
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Example #2 (Solution)

Q. |A stress state has been measured where:

o; = 15 MPa, plunging 35° towards 085°
o, = 10 MPa, plunging 43° towards 217°
o3 = 8 MPa, plunging 27° towards 335°

Find the 3-D stress tensor (where x=east, y=north, z=up).

A [ ori
871 0.88 —0.54
= PpT -
Oyyz = RToy,R O =| 088 13.04 269 | MPa.
—054 269 11.24
—>|Z,<— 30 of 79 Erik Eberhardt:- UBC :Geological Engineering EOSC: 433

15



m
X
o
S
®

3

tion of

.......................

I 'coordinate s
this question that

presenc

ffec

t the stress f

H

odology

find th

s tenso

system where

ide
ide

au

trike of the fault,

3
x
g
3
2
o

rientation iof the fault

—axi

 Q.|Determine the stress components in a local coordinate system
ic e fault. : ; :
oy =15 M plungmg3 ° towards 085°
S0 ¢ o, = 10 MPa, plunging 43° towards 217°
63 = 8 MPa, plunging 27? towards 335° : :
fault orientation = 295°/50°. § 5 :
A. | Step 1 We t eréf re nipp'i (o) de' ermiine O re_/m )r'ef
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he_m-

v 1'h o
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Example #3 (Solution)

Q. |Determine the stress components in a local coordinate system
aligned with the fault.

o; = 15 MPa, plunging 35° towards 085°
o, = 10 -MPa, plunging 43° towards 217°
o3 = 8 MPa, plunging 27° towards 335°

fault orientation = 295°/50°.

A. | Step 2: R
coseycosf;  sinegcosf;  sinfy —0.906 —0.423 0.000
R =|cosa,cosf, sina,cospB, sinfy, —— 0.272 —0.583 0.766
cosa,cosfB, sina,cosfB, sinf, —0.324 0.694 0.643

—>|Z|<— 33 of 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433

Example #3 (Solution)

Q. |Determine the stress components in a local coordinate system
aligned with the fault.

oy = 15 MPa, plunging 35° towards 085°
o, = 10 MPa, plunging 43° towards 217°
o3 = 8 MPa, plunging 27° towards 335°

fault orientation = 295°/50°.

870 101 —0.44
A. | Step 3: g
! 101 13.06 265

—-0.44 265 11.23

s.reE 4 1026 094 -—2.24
Olin = Ro-xy T 094 880 032 | MPa.

—-224 032 1394

—)IZ,<— 34 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC: 433
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Example #3 (Solution)

Q. |Determine the stress components in a local coordinate system

aligned with the fault.
15 MPa, plunging 35° towards 085°

G1: =
o, = 10 -MPa, plunging 43° towards 217°
o3 = 8 MPa, plunging 27° towards 335°

fault orientation = 295°/50°.

A. |l or:

Omn = Ro-xyzRT

871 088 —0.54 10.16 093 -—-2.12
om=R| 088 13.04 269 |[R"=] 093 876 029 | MPa.
| —054 269 1124 —2.12 029 14.07
—>|Z|<— 35.0f 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433

Example #4

Q. Six components of stress are measured at a point:
Gy = 14.0 MPa Ty = -0.6 MPa
oy = 34.8 MPa Ty, = 6.0 MPa
6, = 16.1 MPa T, = -2.1 MPa

Determine the principal stresses and their direction cosines.

—>|Z,<— 36 of 79 Erik Eberhardt:- UBC :Geological Engineering

EOSC: 433
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Stress Invariants - Step 1

When the stress tensor is expressed with reference to sets of
axes oriented in different directions, the components of the tensor
change. However, certain functions of the components do not
change. These are known as stress invariants, expressed as I, I,
I;, where:

I =0 +o0y,+o0y,

— 2
12 = OxxOyy + OyyOzz + 0505 — Ty —

2 _ .2
xy T}’Z T

X

— 2 2 2
I3 = 04203y 027 + 2Tay Ty Tox — Oxx Ty, — Tyy Ty — O T

The expression for the first invariant, I, indicates that for a
given stress state, whatever its orientation, the values of the
three normal stresses will add up to the same value I;.

—>|Z|<— 37 of 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433

Stress Invariants - Step 2

When the principal stresses have to be calculated from the
components of the stress tensor, a cubic equation can be used for
finding the three values oy, 05, o3:

07 = (Oxx + Oyy +02)0° + (0xx0yy + 0027 + 00207z — Ty, — T;, — T)0 —
2 2 2
(0xx0yy0zz + 2Tay Ty Tox — Ox Ty, — Oy Ty — O Tyy) =0
or

0’3—1102+12(7—]3=0

Because the values of the principal stresses must be independent of
the choice of axes, the coefficients I, I,, I, must be invariant
with respect to the orientation of the axes. It can also be noted
from the first invariant that:

I1=o-xx+o-yy+o-zz =01 * 0t 03
—>|Z,<— 38 of 79 Erik Eberhardt:- UBC :Geological Engineering EOSC: 433
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Stress Invariants - Step 3

Each principal stress is related to a principal stress axis, whose
direction cosines can be obtained, for example for o, through a
set of simultaneous, homogeneous equations in 4,4, 4y , 4,;, based
on the dot product theorem of vector analysis:

xxl 7")‘1 >\/zl -
L Xtk . A=|Ow—0O1 Oy __| o O
A B C Where. Oy: Oz: — O B Ozx Ozz— O
c=|% O»w=0
GZX Gyz
. . — 2 2 2\1/2
Substituting for Ay, A, , 4, o ha =A(A"+B"+C7)
in the dot product relation Mt dy+ie=1 A = BI(A? + B 4 C1)
for any unit vector gives:
Ao =CHA+ B+ C*H'"?
Brady & Brown (1993)
—>|Z|<— 39 of 79 Erik Eberhardt:- UBC Geological :Engineering EOSC 433

Stress Invariants - Step 4

Proceeding in a similar way, the vectors of direction cosines for the
intermediate and minor principal stresses axes, i.e. (4, Aga Az2)
and (4,3, 43 , 4,3) are obtained by repeating the calculations but
substituting o, and o3.

x . ?Ly: )\rzﬁ - Oxy Oz N Cu—0) Oun
[_; = —[j:' = 7 =K Where: Oy Cu— 0, £ Oz [ RN
Fo_|ox—01 oy
Oz Oy:
. Oxy O:x e Oxc— O3 Oz
% = %‘- = );2"' =K Where: N Oy — 03 Oy H Gy Oy:
I = Cxx— O3 Oxy
Gy Gyy— O3
—)IZ,<— 40 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC: 433

20



Stress Invariants - Step 5

The| procedure for calculating the principal stresses and the
orientations of the principal stress axes is simply the determination
of the eigenvalues of the stress matrix, and the eigenvector for
each eigenvalue. Thus, some simple checks can be performed to
assess the correctness of the solution:

Invariance of “the sum:of the 1 + G2 + O3 = Gax + Gyy + Gz
normal stresses: requires ‘that:

The condition of ‘orthogonality requires that
each of the three dot products of the vectors Mot Azt At Ap + Azt A =0
of the direction cosines must vanish:
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Example #4 (Solution)

Q. |Six componen'rs of stress are measured at a point:

« = 14.0 MPa w = -0.6 MPa
cyy = 34.8 MPa ryz = 6.0 MPa
6, = 16.1 MPa T, = -2.1 MPa

Determine the principal stresses and their direction cosines.

A. | Step 1:

|,= O + 0y + 0, = 14.0 + 34.8 + 16.1 = 64.9 MPa

2 2 2
1,= 00y + 0y 0, + 0,00 — Ty° — T;,° — Ty

= (14.0)(34.8) + (34.8)(16.1) + (16.1)(14.0) - (-0.6)°  (6.0)2 — (-2.1)?

=1232.1 MPa
3= OOy Oy, t 2Txy Tyalax = O-xxTyz Oyy sz2 — 0y Txyz
= (14.0)(34.8)(16.1) + 2(-0.6)(6.0)(-2.1) — (14.0)(6.0)?> — (34.8)(-2.1)> — (16.1)(-0.6)?
=7195.8 MPa
—)IZ,(— 42 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC 433
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Example #4 (Solution)

Q. Six.components of stress are measured at a point:

Oxx = 14.0 MPa Ty = -0.6 MPa
Oyy = 34.8 MPa Ty, = 6.0 MPa
05, = 16.1 MPa T, = -2.1 MPa

Determine the principal stresses and their direction cosines.

A | Step2i
-1+ lLo-1;=0
0% -64.90%+1232.10 -7195.8=0
36.6
Step 3: c= {16.01 MPa
12.3

Thus: o, =36.6 MPa o, =16.0 MPa o3 =12.3 MPa
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Example #4 (Solution)

Q. |Six components of stress are measured at a point:

Oxx = 14.0 MPa Ty = -0.6 MPa
oyy = 34.8 MPa T,, = 6.0 MPa
6, = 16.1 MPa T, = -2.1 MPa
Determine the principal stresses and their direction cosines.
A. | Step 4:
_|ow-01 0 348-366 60 _
o oo ‘ 6.0 16.1—36.6‘ =) A=090
B—_ | Ox 06 60 _
Gu Gu-oi| —‘_2_1 o1 s D B=-24.90
Gy Oy—0 -06 34.8-36.6
|z e = [0 = c=a
—)IZ,<— 44 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC: 433

22



Example #4 (Solution)

Q. Six.components of stress are measured at a point:

Oxx = 14.0 MPa Ty = -0.6 MPa
Oyy = 34.8 MPa Ty, = 6.0 MPa
05, = 16.1 MPa T, = -2.1 MPa

Determine the principal stresses and their direction cosines.

A. | Step 5:

Oy
s = ANA%+ B>+ CH” Aa /((0.90)2 +(7 24.90)2 +(77.38)2)Q'5 0.035
Ay =BIA* + B* +CH)"? II]|::> 4. 2490 i :
" /((0.90)2 +(-2490F +(-7.38F |

Ao = CHA* + B+ CH)”
' /((0.90)2 +(-24.90) + (- 7.38F f*
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Example #4 (Solution)

Q. |Six components of stress are measured at a point:

Oxx = 14.0 MPa Ty = -0.6 MPa
G,y = 34.8 MPa Ty, = 6.0 MPa
6, = 16.1 MPa T, = -2.1 MPa

zz

Determine the principal stresses and their direction cosines.

A..| Step 6: lo% o3
A, =-0.668 Ag =0.741
Ay =-0.246 Ays =-0.154
A, =0.702 A =0.653
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Finite-Strain

Strains may be regarded as normalized displacements. If a
structure is subjected to a stress state, it will deform. However,
the magnitude of the deformation is dependent on the size of the
structure as well as the magnitude of the stress applied. In order
to render the displacement a scale-independent parameter, the
concept-of strain-is-utilized-

Strain in-its-simplest form, H:g——‘f_

strain is the ratio of .
. ‘ontraction positive
displacement-to the Ty

undeformed length. !
Hudson-&Harrison (1997)
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Finite-Strain

It should be noted that strain is a 3-D phenomenon that requires
reference to all three Cartesian coordinate axes. However, it is
instructive to start with 2-D strain, and then once the basic
concepts have been introduced, 3-D strain follows as a natural
progression.

| : |
-
It is easier to grasp the _45—1,—0——1"%
concept of normal strain than e
shear strain. This is because Contraction positive R Q Q
the normal displacement and el i
the associated strain occur : 1,"’
along one axis. In the case of PP
shear strain, the quanﬁfy of Negative shear strain: P'Q'>PQ

strain involves an interaction v =tan
between two (or three) axes.

Hudson & Harrison (1997)
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Homogeneous Finite-Strain

One convenient simplification that can be introduced is the concept
of homogeneous strain which occurs when the state of strain is the
same throughout the solid (i.e. straight lines remain straight,
circles are deformed into ellipses, etc.).

xy)  (&.y) &'y

[~ each of the examples,
equations are given o ey . yeky
relating new positions (e.g.
X")in terms of their
original positions (e.g. x).
The coefficients k and v
indicate the magnitudes of
the normal and: shear , ,

strains, respectively. T o i e

Simple shear Pure shear

T
Y S

H ]
1

|

Extension along x-axis Extension along x-and y-axes

.y

Hudson & Harrison (1997)
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Homogeneous Finite-Strain

During geological history, a rock mass may experience successive
phases of deformation. Thus, in decoding such compound

deformation into its constituent parts, we need to know whether
strain phases are commutative, i.e. if there are two deformation
phases, A and B, is the final result of A followed by B the same

as B followed by A?
. the answer is generally NO! H [ ]H
The final state of strain is Simple shear Pare shear
dependent on the straining
seguence in those
circumstances where shear
Strains are involved. This can
be seen in the of f-diagonal
ferms in the strain marrix.

Simple shear followed by pure shear  Pure shear followed by simple shear

Hudson & Harrison (1997)
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Infinitesimal Strain

The infinitesimal longitudinal strain can now be considered in the
x-direction. Because strain-is ‘normalized displacement’, if it is
assumed that u, is a function of x only, then:

&, = du,/dx and hence du, = g,dx.

Considering similar deformations in the y- and z-directions, the
normal components of strain can be generated.

y Q Q*

du, €, 0 0 dx

dx du,
P. P* . du = 0 —Eyy 0 dy
du, du, 0 0 -¢, dz

€ = ax
Hudson & Harrison (1997)
— [« 550f79 Erik Eberhardt - UBC Geological Engineering EOSC 433

Infinitesimal Strain

Derivation of the expressions for the shear strains follows a
similar course, except that instead of assuming that simple shear
occurs parallel to one of the coordinate axes, the assumption is
made initially that shear strain (expressed as a change in angle) is
equally distributed between both coordinate axes, i.e. du=du, if
dx=dy.

du,
"""Q* Vay = ("7’— 20)=8 Cyy = Vxyfr OtC-
Q du;L m:%
dy du, 0 Vg2 Yxzp dx| |du, 0 ey exz|ldx
B - duy| = v, p 0 Vyp|[dy| |dut=|en O ey, fldy
P, P* ax du | Yop Yuh O ||dz| |du, €y €y 0 |ldz

.7t should be :nated that the term Yo 1. €. 2a, is Krnown as the
engineering shear strain, whereas the term 7)0/2, i e o, s known
as the tensorial shear strain. It is the fensorial shear strain that
appears as the off-diagonal components in the strain matrix.
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| itudinal and shear strain co --pvnen**s----i---w
present the complete strain tensor - which is a second o

orti ¥ ; % , nean.
cullr’, al -Gl*ogou- + 'H“lc sTress ?elléyl g

Q o

o le e g | . note that this matrix is symmetrical and hence - -
S 51')\' 17 4 ﬂdﬁﬂf“c Wuﬁcr s ”I.lll7 its ;
perties-being-the-same-as the-stress-matrix

h
= &y E:|  (because they are both second-order tensors)

.. for examﬁ/e at an or’"efifaﬁ_oﬂ of the g 0 0

infinitesimal cube fpr' which fher'egaﬂe no shear 10 g 0} |
strains, we have principal values as the three . |q o .
leading diagonal strain components. L ?

Ext &y + &, =€ + &+ & = aconstant.

— [ 570£79 Erik Eberhardt - UBC Geological Engineering . EOsC 43

- The —)s'h%ain component tr' ansform ation e quations are also directly - SR

analogous  to-the- stress-transformation equations-and so the Mohr's
circle 1 '-epre. entation can be utilized directly for relating normal -

~and shear'— strains on planes at different orientations. |

the principal strains

Eyy i occur where the shear
: / strains are zero

VST £€,normal strain
= =] |
: P Ha the two ends of a Mohr’s }
. e : (B 45y circle diameter represent :

: /I\ ‘ a 2-D strain state
: H +y/2, shear strain

i decn & Hampienn (1007, .

| —>[J«<— 580f 79 Erik Eberhardt - UBC Geological Engineering . . . . EOSC 433




Example #5

Q. |Assume that strains measured by a strain gauge
rosette are £=43.0e-6, £5=7.8e-6 and £;=17.0e-6,
and that the gauges make the following angles to the
x-direction: 6,=20?, 6,=80° and 6,=140°. Determine
the principal strains and their orientations.

A,

—>|Z|<— 59 of .79 Erik Eberhardt:- UBC Geological :Engineering

EOSC: 433

Example #5 (Solution)

Q. |Assume that strains measured by a strain gauge
rosette-are =43.0e-6, €5=7.8e-6 and e;=17.0e-6,
and that the gauges make the following angles to the
x-direction: 6,=20°, 6,=80° and 6,=140°. Determine
the principal strains and their orientations.

A. | Step 1:
0, = 0y c0s“ 6 + o, sin” & + 21, sin 6 cos 0
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Example #5 (Solution)

Q. |Assume that strains measured by a strain gauge
rosette are £=43.0e-6, £5=7.8e-6 and £;=17.0e-6,
and that the gauges make the following angles to the p
x-direction: 6,=20?, 6,=80° and 6,=140°. Determine |z
the principal strains and their orientations. e

A. | In doing so, the 2-D strain

2 2 :
transformation equation linking each |&7 =& 003291’ &y sin O + iy sinp cos O
of the measured strains &, sq and 80 = &, 008" 09 + &, sin” g + yyy sinfg cos Oy
g Yo the 2-D strains ¢, g and Yay |ER=6 cos’ g + &, sin® Bz + Yy sin g cos B

are:
&p cos?0p sin’6p sinbpcosbp | | &
||[|:> eg | = |cos?8y sin?y sinfgcosdy | | &
£r cos?6y sin®g  sinfgrcosby | | o
— [ 610f79 Erik Eberhardt - UBC Geological Engineering EOSC 433

Example #5 (Solution)

Q. |Assume that strains measured by a strain gauge
rosette-are =43.0e-6, €5=7.8e-6 and e;=17.0e-6,
and that the gauges make the following angles to the P
x-direction: 6,=20?, 6,=80° and 6,=140°. Determine |z
the principal strains and their orientations. e

A. | Step 2:

-1
& cos’fp sin’Op sinBpcosbp &p

&, | =|cos?ly sin’8p sinfpcosby g

Yay cos20r sin’0g sinfg cos g &R
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Example #5 (Solution)

Q. |Assume that strains measured by a strain gauge
rosette are £=43.0e-6, £5=7.8e-6 and £;=17.0e-6,
and that the gauges make the following angles to the
x-direction: 6,=20?, 6,=80° and 6,=140°. Determine
the principal strains and their orientations.

A.
- —1
& 0.883 0.117 0.321 43.0 x 1076
e, | ={0.030 0970 0.171 - 7.8 x 107

Vey 1 0.587 0413 —0.492 17.0 x 1076

[ 0.884 —0293 0.449 43.6 x 10
—0.177 0960 0218 |-| 79%x 107 | =

| 0.857 0456 —1.313 17.0 x 1076

41.6 x 107°
3.6 x 1076
18.1 x 1076

— [ 630f79
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Example #5 (Solution)

Q. Assume that strains measured by a strain gauge rosette
are &=43.0e-6,-c5=7-8e-6-and-g,=17.0e-6,-and-that-the
gauges make the following angles to the x-direction: 6,=20°
0,=80° and 6,=140°. Determine the principal strains and
their orientations.

xy

A. | Step 3:
Negative|
shear By
strain ~
3
e
3
fe 2
strain 3
s
3
I
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Example #5 (Solution)

Q.- Assume-that strains:measured by a strain-gauge rosette
are(g=43.0e-6; £q=7-8e-6-and e,=17.0e-6,-and-that-the %
P
R

gauges make the following angles to the x-direction: 6,=20°,
0,=80° and 6,=140°. Determine the principal strains and

their orientations.
bxx = &y Gy = &, an

A. | Step 4: . A
<ot

Yiy is referred to as engineering shear strain.
e,, is referred to as mathepfatical shear strai

ey

)+ [0.25(s, — ¢ )H@]D

) - 25(e, -2, F +2,2]°

Negative,
shear
strain

& = 4373'6
Positive n
% & = 1.52e-6
strain ,B:%tan"[}
e.—e
i 12.7°
— [ 650£79 Erik Eberhardt - UBC Geological Engineering EOSC 433

The Elastic Compliance Matrix

Given the mathematical similarities between the structure of the
strain-matrix-with-that-of the stress-matrix, it-may seem fitting
to find a means to link the two matrices together. Clearly, this
would be of great benefit for engineering, because we would be
able to predict either the strains (and associated displacements)
from a knowledge of the applied stresses or vice versa.

A simple way to begin would be to assume that each component of
the istrain tensor is a linear combination of -all the components of
the stress tensor, i.e. each stress component contributes to the
magnitude of each strain component. For example, in the case of
the ¢, component, we can express this relation as:

Exy = Sllo-xx + SlZny + SlBO-zz + 814Txy + SlSTyz + sl6fzx-

—>|Z,<— 66 of 79 Erik Eberhardt:- UBC :Geological Engineering EOSC 433
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The Elastic Compliance Matrix

Because there are six independent components of the strain
matrix, there will be six equations of this type. If we considered
that the strain in the x-direction were only due to stress in the
x-direction, the previous equation would reduce to:

Ey = SHO'XX + 5120'yy + SlSGZZ + S]4Txy + SISTyz + SIGTZX’ & = Sllo-xx
or: Oy = 8xx/811 = Esxxr where E = 1/811.

The theory of elasticity, in the  *
form-of -the generalized Hooke's
Law, relates all the components

= SuOy + 5120y + 5130, + S1uTy + Si5Ty + ST
&y = SuOu + SpOy, + 5230, + SuTy + Syt + SpeTx
&, = 53104 + S0y, + 5330, + STy + SasTy; + Szl
T ) &y = S0 + S0y, + 5430, + SuTy + SusTy, + SseTir
of the strain matrix-to-all-the € = S0 + S0,y + Ssa0 + SosTy + 5T + St
components of the stress matrix. . = sqo. + S0, + Sao. + Sty + Sestys + Seste

— [ 670t79 Erik Eberhardt - UBC Geological Engineering EOSC 433

The Elastic Compliance Matrix

It is not necessary to write these equations in full. An accepted
convention is to use matrix notation:

€ O Sy Su Si Su S Sy

Sl’y O-W SZI SZZ 823 524 SZE S%

[l = [S][o] where [e] =| % |and [0]=| 7= |and [5] =| %2 5= S= Su S Su|
6Xy t,‘{l/ S41 S4Z 543 544 s45 545

- &y Ty Su Sz Ss Siu S Ssk
€, T, S Se Se Su S¢S

The [S] matrix is known as the compliance matrix. In general, the

higher the magnitudes of a specific element in this matrix, the
greater will be the contribution to the strain, representing an
increasingly compliant material. ‘Compliance’ is a form of
‘flexibility’, and is the inverse of ‘stiffness’.
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The Elastic Compliance Matrix

The| compliance matrix contains 36 elements, but through
considerations of conservation of energy, is symmetrical.
Therefore, in the context that each strain component is a linear
combination of the six stress components, we need 21 independent
elastic constants to completely characterize a material that follows
the generalized Hooke's law.

Indirect coupling of normal Coupling of normal and
components (EH) shear components (@)

It is necessary, for [m\@
practical applications, to Dircctcoupling of a1 |\ [

. normal (m)

consider to what extent we componets
can reduce the number of
non-zero elements of the

matrix.

Coupling of shear
components
in different directions

| Direct coupling of all
associated
shear components

Hudson & Harrison (1997)

— [ 690f79 Erik Eberhardt - UBC Geological Engineering EOSC 433

The Elastic Compliance Matrix

Indirect coupling of normal Coupling of normal and

For‘ fypical engineering coniponems(m) shearcomponems()
materials, there will be non- iNENEE
zero terms along the leading Direct couping o al
N N ) normal (m)
diagonal because longitudinal components

stresses must lead to

longitudinal strains and shear
stresses must lead to shear Dt couptngof
strains. ottt s (@)

shear components

Coupling of shear
components
in different directions

Symmetric

The isotropy of the material is directly specified by the interaction
terms, i.e. whether a normal or shear strain may result from a
shear or normal stress, respectively.
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The Elastic Compliance Matrix - Isotropy

For example, omitting all shear et coulingof vormal Covpling of sl
linkages not on the leading diagonal g e

- which means assuming that any N

contributions made by shearing omponeas

stress components in a given o coingoro
direction to normal or shear strain Symmeri DN e
components in other directions are pisctcoupingotal N\
negligible - causes all off-diagonal S Compon

shear linkages to become zero.

: ; 1/E, vy /E, -vy,/E, 0 0 0
The compliance matrix then VE, —vu/E, 0 0o 0
reduces to_one with nine material VE, 0 0 0
properties, which is the case for /Gy 1/00 g
H H 23
an orthotropic material. symmetric Ve,
— [ 710£79 Erik Eberhardt - UBC Geological Engineering EOSC 433

The Elastic Compliance Matrix

We can reduce the elastic compliance matrix even
further by considering the case of transverse isotropy.
This is manifested by a rock mass with a laminated
fabric or one set of parallel discontinuities. In the case
when the plane of isotropy is parallel to the plane
containing Cartesian axes 1 and 2, we can say that:

"ZLY, E,=E=E and Ey=FE
4, Vp=Vy=v and V3=V =V
7 Gp#Gy and Gy =Gy =G.
1/E -v/E —v'/E 0 0 0
1/E -v//E 0 0 0
.. thus, the number of vE 0 0 0
independent elastic constants A+ 0
for a transversely isotropic £ Ve .
material is five.
symmetric /G
—)IZ,(— 72 of 79 Erik Eberhardt:- UBC :Geological :Engineering EOSC 433
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The Elastic Compliance Matrix - Isotropy

The final-reduction that can-be made Ey=E=E=E
to the compliance matrix is to assume
complete isotropy, where:

Vip = Vo3 = V31 =V

Gn=0Gp=G;x=G

Note that, because we now have
complete isotropy, the subscripts

can be dispensed with, the shear 1 v v 0 0 0
modulus & is implicit and the factor w0 0 0
1/E is common to all terms and can = 1/t oo 0 0
be brought outside the matrix. ) Z(liv) 3
This ultimate reduction results in symmetric 21+v)
two elastic constants for the case
of a perfectly isotropic material.
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The Elastic Compliance Matrix - Isotropy

21 elastic constants:

all the independent S;; in the § matrix.
Because the matrix is symmetrical, there
are 21 rather than 36 constants.

General anisotropic rock

Orthotropic rock

(three axes of symmetry, e.g. similar to a
rock mass with three orthogonal fracture
sets)

Transversely isotropic rock
(one axis of symmetry, e.g. similar to a
rock mass with distinct laminations or
with one main fracture set)

Perfectly isotropic rock

9 elastic constants:

as in the matrix above — 3 Young’s
moduli, 3 Poisson’s ratios and 3 shear
moduli

5 elastic constants:
2 Young's moduli, 2 Poisson’s ratios, and
1 shear modulus (see Q5.4)

2 elastic constants:
1 Young’s modulus, 1 Poisson’s ratio

.. typical isotropy assumptions used for rock.

Hudson & Harrison (1997)
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Example #6

Q. For the strains found.in the previous problem, and
using values for the elastic constants of E = 150 GPa
and v = 0.30, determine the principal stresses and
their orientations.

A. Step 1:

-1

& 0.883 0.117 0.321 43.0 x 107
e | =(0030 0970 0.171 | 7.8x107°
iy 0.587 0413 —0.492 17.0 x 1076

0.884 —0.293 0.449 43.6 x 1076
=|-0177 0960 0218 |-| 7.9x 107
0.857 0456 —1.313 17.0 x 107°

41.6 x 107°
3.6 x 1076
18.1 x 1076

— [ 750£79 Erik Eberhardt - UBC Geological Engineering
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Example #6 (solution)

Q. For_the principal strains found.in the previous
problem, and using values for the elastic constants of
E = 150 6Pa and v = 0.30, determine the principal
stresses and their orientations.

A.| Step 2:

Ty 0 0-i1-w Vay
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Example #6 (Solution)

Q. For the principal strains found-in the previous
problem, and using values for the elastic constants of

. L P
E = 150 6Pa and v = 0.30, determine the principal x
stresses and their orientations. 0
A. | Step 3:
ep 3:
oy i 0 &x Ox-=-7.04 MPa
o= 1 0 ey |- INEE=D> oy, =-2.65 MPa
oy 0 0-ia-v| |m Tyy-=-1.04.MPa
— [ 770£79 Erik Eberhardt - UBC Geological Engineering EOSC 433
Example #6 (Solution)
Q. For_the principal strains found.in the previous
problem, and using values for the elastic constants of R
E = 150 6Pa and v = 0.30, determine the principal r
stresses and their orientations. 0
Step 4:
A . o 50, +0) + 3o, — o )cosp
ey
~ 4o, —o,)sing
o (@.0) 7
Calculate the radius as y
1 : : () finbipvisis g
How-o) ) x “
and the o-value of the centre as 2(o, + o). - PR =0 = () ¢ =tan "[ 2y ]
o,-0,
—>|Z,<— 78 of 79 Erik Eberhardt:- UBC :Geological Engineering EOSC: 433
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| problem, and using values for the elastic constants o
E Pa and v = 0.30, determine the principal -

A Cémpuﬁng the _pﬁ'in;ipal stresses and 'rhe:_r_-__or‘iéntc_l_ﬁqﬁ_s__fr'o_m_i___

these values gives o, = 7.28 MPa and o, = 2.41 MPa, with -
the angle between the x-direction and the major principal
stress being 12.7°. @ : : : :

Notice that because this is an Eisctropﬁc material, the :
orientations of the principal stresses and the principal striains

are identicadl.
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