

It is instructive to consider the fund	damental objective of the excavation
process - which is to remove rock m	aterial (either to create an opening
to obtain material for its inherent v	
rock mass, it is necessary to induce	additional fracturing and
fragmentation of the rock.	
This introduces three critical aspect	ts of excavation:
The peak strength of the rock	
The <i>in situ</i> block size	
distribution must be changed	
to the required fragment size	
distribution.	
By what means should the	
required energy be introduced	
into the rock?	

-+	~~~	Tabl		enera pport	il classificat		tunnelling machine	es (AITES / II	A, Wor	king Group No.14). Machine	1	+-				
		Location			tem Face	Method	Tool	Reaction Force	Category	Type		+				
	÷			ione		Partial Face Excavating Machines (PFM)	Various	None or Grippers		Special Rock Tunnelling Machines - Mobile Miner - Contin uous Miner - Other		1				
							Cutting disk	Grippers	achin	Unshielded TBM Special Unshielded TBM		T				
		Cavity				Full Face Rotat- ing Cutting Head (TBM)	Cutting disk/ Cutting bits/ Cutting knives & teeth	Thrust Jacks	Rock Machines	Single Shielded TBM (DS-TBM)	1	Ţ				
					None		Cutting disk	Grippers and Thrust Jacks	1	Double Shielded TBM (DS-TBM)		4				
			1			PFM	Rod header/ Back hoe/ Manual excavation	Thrust Jacks		Open Shield						
	~~~			<u> </u>		TBM	Cutting bits/ Cutting knives & teeth	İ	1	Mechanical Supported Closed Shield		┽				
+			Pla		Mechanical	PFM	Road header/Back hoe	1		Mechanical Supported Open Shield		╈				
	****		Shield						Commerced	TBM	Cutting bits/Cutting knives & teeth	1	5	Compressed Air Closed Shield		-
		and cavity			Compressed Air	PFM	Road header/ Back hoe/ Manual excavation		Soft Ground Machines	Compressed Air Open Shield		╈				
		Face and		Fluid		TBM	Cutting disk/ Cutting bits/ Cutting knives & teeth	Thrust Jacks	ft Ground	Close Slurry Shield – Slurry Shield – SS-Hvdroshield	(2000)	Ţ				
					Slurry	PFM	Road header/Back hoe		S	Open Slurry Shield – Special Open - Shurry Shields	DZZ	4				
					Earth Pres- sure Balance		Cutting disk/	1		Earth Pressure Balance Shield - EPBS Special EPBS	& Pell:	+				
			None or fluid		ne or slurry or Press. Balance	TBM	Cutting bits/ Cutting knives & teeth			Combined Shield - Mix Shield - Polishield	Barla	L				



	eotechnical Conditions	Consequences/Requirements													
, <u> </u>	ing loads, blocky/slabby rock,	At the face: cutterhead jams, disc impact loading, cutter disc and mount damage possi-													
	ak, cave-ins	In an ofdice of the index pairs, incompose or outling, entry to the face may be required with impact on equipment selection, recessed cutters may be recommended for face ground control.													
		In the tunnel: short stand-up time, delays for immediate and additional support (perhaps grouting, hand-mining), special equipment (perhaps machine modifications), gripper anchorage and steering difficulty, shut-down in extreme cases of face and crown instabil- ity. Extent of zones (perhaps with verification by advance sensing/probe hole drilling)													
		may dictate shield required, and potential impact on lining type selection (as expanded segmental linings may not be reasonable), grouting, and backpacking time and costs may be high. Low flow/low pressure - operating nuisance, slow-down, adequate pumping capability													
Ground															
Giouna	water inflow														
Giodildi	water inflow	Low flow/low pressure - operating nuisance, slow-down, adequate pumping capability high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wat muck handling, may require advance													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling.													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-saft water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated -													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-salk water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation.													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-saft water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated -													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-salt water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated - significant delays.													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-salt water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated - significant delays.													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-salt water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated - significant delays.													
	water inflow	high flow and/or high pressure - construction safety concerns, progress slow or shut- down, special procedures for support and water/wet muck handling, may require advance sensing/probe hole drilling. Corrosive or high-salt water - treatment may be required before disposal, equipment dam- age, concrete reactivity, problems during facility operation. Equipment modifications (as water-proofing) may be required if inflow is unanticipated - significant delays.													

Impacts of Geotechnical Conditions on T	•													
Major Geotechnical Conditions	Consequences/Requirements													
Squeezing ground	Shield stalling, must determine how extensive and how fast squeeze can develop, delays for immediate support, equipment modifications may be needed, if invert heave and train mucking - track repair and derail downtime.													
Ground gas/hazardous fluids/wastes	Construction safety concerns, safe equipment more expensive, need increased ventilation capacity, delays for advance sensing/probing and perhaps project shut-down, special equipment modifications with great delays if unanticipated, muck management and dis- posal problems. Delays for immediate support, perhaps progress shut-down, construction safety concerns, special procedures may be required. Reduced <i>PRev</i> and increased <i>F_n</i> . TBM needs adequate installed capacities to achieve reasonable advance rates, delays for high cutter wear and cutterhead damage (especially if jointed/fractured), cutterhead fatigue, and potential bearing problems Impact disc loading may increase failure rates, concern for side wall gripping problems with open shields, possible steering problems.													
Overstress, spalls, bursts														
Hard, abrasive rock														
Mixed-strength rock														
Variable weathering, soil-like zones, faults	Slowed progress, if sidewall grippers not usable may need shield, immediate and addi- tional support, potential for groundwater inflow, muck transport (handling and derails) problems, steering difficulty, weathering particularly important in argillaceous rock.													
Weak rock at invert	Reduced utilization from poor traffickability, grade, and alignment - steering problems.													
	U.S. Army Corps of Engineers (1997													









TBM Selection & Geological Risk
The Yacambú-Quibor Tunnel is a prime example of tunnelling blind - the geology was largely unfamiliar and unpredictable. With little previous experience, it was unknown how the rock would react, especially under the high stresses of the Andes. <u>Geology: Weak, tectonically sheared graphitic phyllites were</u> encountered giving rise to serious squeezing problems, which without
adequate support would result in complete closure of the tunnel.
1979: During a holiday shutdown, squeezing rock conditions were left unchecked, resulting in the converging ground effectively "swallowing" one of the TBMs.   1980's: A decision is made to permit the tunnel to be excavated by drill & blast. Recently completed, it took more than 33 years to tunnel the full 24 km.
+ 0+ 38 of 40 Tunnelling Grad Class (2012) Dr. Erik Eberhardt



Barla,	G	s Pe	lizze	1 5	5-12	000	5-1	TRN	T	inne	elino	in in	dif	ficu	1+ 7	ond	itio	ns	Tn	Geo	Fna	200	0	Mel	bour	ne
Techno															ļ						9					
<b>lardir</b> 258pp.		H (1	.981	<del>)</del> .	Ŧur	inel	ling	His	stor	y a	ind	My	Ow	n-I	nvo	lven	nent	" <u>.</u> 6	<del>)</del> old	er	Ass	ocic	tes		oror	to
<b>ludso</b> . Elsev									"Er	ngin	eeri	ng F	Rock	( Me	zcho	inics	- /	۹n I	ntro	oduc	tion	n to	the	Pri	ncip	les
<b>Maidl,</b> Berlin,			renk	necl	ht.	M	& A	nhe	use	r, L	(1	996	). "	Mea	<u>:har</u>	iiseo	I SI	nielo	I To	Inne	lling	g". l	Erns	it &	So	hn
NTNU																									eeri	ng
Norwe	gian	Univ	iersi	ty o	f S	cier	ice (	and	Tec	hno	logy	(N	TNU	ר, (נ	ron	idhe	îm, I	Proj	ect	Rep	port	2A	-95			
NTNU Scienc																		roce	SS".	No	rwe	giar	Un	iver	sity	01
Thuro,																										
paramo p. 122			exc	:ava	tab	ility	. In	: Pr	oc.,	10†	hΙ	SRN	1.Co	ngr	ess,	Jol	nanr	iesb	urg	. SA	'IW	M: .	Joh	anne	spr	irg
INIT																										
Engine 95.	erin	g, No	rwe	gian	Un	iver	rsity	( ot	Scı	enc	e ar	d I	ech	nolo	igy (	ŅΠ	NU)	, 1r	ond	hein	n, Pi	roje	ct I	Repo	ort i	2B
<b>Whitt</b> Mining										unn	ellin	g: C	Desi	gn,	Sta	bilit	y a	nd (	Cons	itru	ctio	n".	Ins [.]	titu	tion	0