

Although the use of these early systems eventually died out due to the huge quantity and high cost of timber required, and the replacement of masonry linings with concrete, their underlying principles still live on. That is the benefits of driving one or more small headings that are later enlarged, enabling for ground deformations to be controlled better.

The Observational Method in Design

In the 1940's, Karl Terzaghi introduced a systematic means to solve geotechnical problems in the face of geological uncertainty, referring to it as the "observational method" (paraphrased here):

"In geotechnical engineering, a vast amount of effort goes towards securing roughly approximate values for required parameter inputs. Many additional variables are not considered or remain unknown. Thus, the results of computations are no more than working hypotheses, subject to confirmation or modification during construction."

"These uncertainties require either the adoption of an excessive factor of safety, or else assumptions based on general experience. The first of these is wasteful; the second is dangerous as most failures occur due to unanticipated ground conditions."

"As an alternative, the observational method, provides a learn as you go appracch. The procedure for this is to base the design on whatever information can be secured, making note of all possible differences between reality and the assumptions (i.e. worst case scenarios), and computing for the assumed conditions, various quantities that can be measured in the field.

Based on the results of these measurements, gradually close the gaps in knowledge and, if necessary, modify the design during construction."

16 of 34 Tunnelling Grad Class (2012) Dr. Erik Eberhardt

The Observation Method in Design In brief, the complete application of the method embodies the following components: Sufficient exploration to establish the general nature, pattern and properties of the soil deposits or rock mass; Assessment of the most probable conditions and the most unfavourable conceivable deviations from these conditions; Establishment of the design based on a working hypothesis of behaviour anticipated under the most probable conditions Selection of quantities to be observed during construction and calculation of their anticipated values on the basis of the working hypothesis: e) Calculation of values of the same quantities under the most unfavourable conditions compatible with the available subsurface data; f) Selection in advance of a course of action or modification of design for every foreseeable significant deviation of the observational findings from those predicted on the basis of the working hypothesis; g) Measurement of quantities to be observed and evaluation of actual conditions; h) Modification of design to suit actual conditions. 17 of 34 Tunnelling Grad Class (2012) Dr. Erik Eberhardt

	unnelling Method (NATM)		
Year	Principal development		
1848 to1920s	Development of the use of fast setting mortars as a tunnel support; invention of the cement gun and the registration of patents; early uses of gunite in civil and mining engineering tunnel operations		
1948	Development of concepts relating to controlled rock deformation and dual lining system involving systematic anchoring for tunnelling which were postulated by Rabcewicz		
1954	The first application of shotcrete as a supporting element in squeezing ground in tunnelling was carried out at the Runserau HEP Project, Austria by Brunner		
1958	Brunner filed a patent of this concept of tunnel construction in squeezing ground and called it the Shotcrete Method		
1960	Mueller recognised the roles played by load and deformation measurements as part of the design process aimed at preventing excessive rock loading of tunnels and consequently developed a systematic measuring system which formed part of the process	h (1990)	
1962	Rabcewicz first used the term the New Austrian Tunnelling Method whilst speaking at a meeting in Salzburg	& Frit	
1964	NATM achieved worldwide recognition and appears to have originated from the publication of Rabcewicz [15.7] in connection with the application of the shotcrete method in the Schwaikheim Tunnel which was designed under the guidance of Mueller and Rabcewicz	Whittaker & Frith	

')							ne NATA							onit	orir	19
							proach),									
	L F C .		-1]			ible and				1116		1		al	
							esign and									
	design	n and	supe	ervisory	engine	ers and	the con	tract	or's	en	ginee	rs c	and.	for	em	zn 🕂
	must	unde	rstan	d and a	ccept	the NA	TM appr	oach	and	ad	pt c	co.	-ope	rat	ive	
	attitu	ide t	o dec	ision m	aking a	nd the	resolutio	n of	prot	len	S.					
	++		-}}-		- 											
Class	Approx.	Approx.	Typical Section	Rock Mass	s	SUPPORT MEASURE		Influence or	,]				ļ			
Ciass	range	range	Diameter 6n		Туре	Quantity per linear metre	Place of installation	advance		,						
F1	10-100	65-80	$ \bigcirc $	Long term stability	Local Support Rockbolts L=2.0 m required	Up to 0.5	Working platform	None								
F2	4-10	59-65	O	Local rockfall	Local Support Rockbolts L=2.0 m Wire mesh Shotcrete 5 cm	Up to 1 Up to 1.0 m ² Up to 0.1 m ³	Working platform	None					-			
F3	1-4	50-59	O	Frequent rockfall in machine area	System Support Rockbolts L=2.0 m Wire mesh Shotorete 5 cm	From 1 to 3 From 1 to 1.5 m ² From 0.1 to 0.5 m ³	Working platform	Short delays								
F4	0.1-1	35-50	Ö	Frequent rockfalls in machine area	Rockbolts L = 2.5 m Wire mesh Shotcrete 8 cm Steel ribs	From 3 to 5 From 5 to 9 m ² From 0.5 to 1.0 m ³ From 40 to 80 kg	Working platform behind cutterhead	Delays after each stroke			e					
F5	0.03-0.1	27-35	Q	Frequent rockfalls in cutterhead area after each stroke	Rockbolts L = 2.5 m Wire mesh Shotorete 10 cm Steel ribs	From 5 to 7 From 9 to 18 m ² From 1.0 to 1.8 m ³ From 80 to 160 kg	Immediately behind cutterhead after each stroke, additional support from working platform	Long delays after each stroke	of	en	nt f base	d o	n a	roc	k m	ass
F6	0.01-0.03	20-27	0	Large overbreak in cutterhead area after partial strokes		From 7 to 10 From 18 to 27 m ² From 1.8 to 3.0 m ³ From 160 to 300 kg	Immediately behind cutterhead after each partial stroke, additional support from working platform	Long delays after each partial stroke			icat each					, t
F7	0.001-0.01	5-20		No self supporting capacity	Special measures to be decided according to conditions		injection, forepoling, injection, cast concrete	Delays of months or		ınd.			<u> </u>			

