

New Aus	trian Tu	innelling Method (NATM)		
	Year	Principal development		
	1848 to1920s	Development of the use of fast setting mortars as a tunnel support; invention of the cement gun and the registration of patents; early uses of gunite in civil and mining engineering tunnel operations		
	1948	Development of concepts relating to <i>controlled rock deformation</i> and <i>dual lining system involving systematic anchoring</i> for tunnelling which were postulated by Rabcewicz		
	1954	The first application of shotcrete as a supporting element in squeezing ground in tunnelling was carried out at the Runserau HEP Project, Austria by Brunner		
	1958	Brunner filed a patent of this concept of tunnel construction in squeezing ground and called it the Shotcrete Method		
	1960	Mueller recognised the roles played by load and deformation measurements as part of the design process aimed at preventing excessive rock loading of tunnels and consequently developed a systematic measuring system which formed part of the process	h (1990)	
	1962	Rabcewicz first used the term the New Austrian Tunnelling Method whilst speaking at a meeting in Salzburg	& Frit	
	1964	NATM achieved worldwide recognition and appears to have originated from the publication of Rabcewicz [15.7] in connection with the application of the shotcrete method in the Schwaikheim Tunnel which was designed under the guidance of Mueller and Rabcewicz	Whittaker & Frith (1990)	
•				

Ne	УС	len	nen	<u>ts o</u>	of the	<u>: NA</u>	IMP	<u>'hild</u>	<u> 050</u>	<u>pp</u>	<u>1Y</u>				+
7)					gements										ng
					approact										
					possible the desi										
					rs and t										
					nd accep										
					to decisi										ns.
	Approx.	Approx.	Typical	Rock		UPPORT MEASURE			٦						
Class	Q range	RMR range	Section Diameter 6	Mass	Туре	Quantity per linear metre	Place of installation	Influence on advance	'						
F1	10-100	65-80	\bigcirc	Long term stability	Local Support Rockbolts L=2.0 m required	Up to 0.5	Working platform	None							
F2	4-10	59-65	\bigcirc	Local rockfal	Local Support Rockbolts L=2.0 m Wire mesh Shotcrete 5 cm	Up to 1 Up to 1.0 m ² Up to 0.1 m ³	Working platform	None]						
F3	1-4	50-59	\bigcirc	Frequent rockf in machine are		From 1 to 3 From 1 to 1.5 m ² From 0.1 to 0.5 m ³	Working platform	Short delays							
F4	0.1-1	35-50	Ő	Frequent rockfa in machine are		From 3 to 5 From 5 to 9 m ² From 0.5 to 1.0 m ³ From 40 to 80 kg	Working platform behind cutterhead	Delays after each stroke					or s		
F5	0.03-0.1	27-35	Ð	Frequent rockfa - in cutterhead ar after each stro	rea Shotcrate 10 cm	From 5 to 7 From 9 to 18 m ² From 1.0 to 1.8 m ³ From 80 to 160 kg	Immediately behind cutterhead after each stroke, additional support from working platform	Long delays after each stroke	1 1 2 2 2				ed o sific		
F6	0.01-0.03	20-27	Ð	Large overbreal - cutterhead area partial stroke	after Shotarata 15 cm	From 7 to 10 From 18 to 27 m ² From 1.8 to 3.0 m ³ From 160 to 300 kg	Immediately behind cutterhead after each partial stroke, additional support from working platform	Long delays after each partial stroke	_	om	plet	ted	aft	er e	eact
F7	0.001-0.01	5-20	\bigcirc	No self support capacity	ing Special measures to be decided according to conditions		injection, forepoling, injection, cast concrete	Delays of months or more	-	drill	an	d b	last	rol	Ind.

	he support reaction line, we assume the lining behaves as	
	led cylinder subject to radial loading. The equation for t	he
lining ch	racteristics in this case is:	
	$k = \frac{E_{\rm c}}{1 + v_{\rm c}} \frac{a^2 - (a - t_{\rm c})^2}{(1 - 2v_{\rm c})a^2 + (a - t_{\rm c})^2}$	
	$\kappa = \frac{1}{1 + v_{\rm c}} \frac{1}{(1 - 2v_{\rm c}) a^2 + (a - t_{\rm c})^2}$	
3 Solvi	g for the stiffness of the lining, where $t_c = 1.85$ -	
	= 0.15 m, E _c = 30 GPa and v_c = 0.25, we get:	
	$30 GPa \left[(1.85m)^2 - (1.85m - 0.15m)^2 \right]$	
k =	$\frac{30 GPa}{1+0.25} \left[\frac{(1.85m)^2 - (1.85m - 0.15m)^2}{(1-0.5)(1.85m)^2 + (1.85m - 0.15m)^2} \right]$	
	$1+0.25 \left[(1-0.5)(1.85m) + (1.85m - 0.15m) \right]$	
k =	2.78 GPa	

<u>Grour</u>	nd	R	es	;po	on	S	2	Cı	<u>Ir</u>	ve	_	F	<u>2 a</u>	s	<u>ic</u>	1)e	f	or	m	<u>at</u>	io	n		
		_					٤.						_				C	Σ ₁	↑			[
Γο αςςοι																		-					,		
criterion plastic f														mb								/			
criterion				uer	111	su .	UY	-	e	AIO.		60	00	me					1		7		1		· · · ·
		E	•	1																	/	1	1		
									1											1					
		σ_1	=	σ_{c}	m	+	<mark>κ</mark> σ	3									σ	cm	\downarrow						~
			1						J								1	cm	Ť	****		r			**
															ro	:k i	nas	SS						→	(
			+	+			••••									UÇ	S								~
				+			****					****													
The unia													ro	:k	mas	55	(σ	cm)	ar	d ·	the	s	ope	- 01	.
the failu	re	env	elo	pe	IS	In	σ1	-σ	3 S	pac	e I	s:													~~
									****				14		•					****					**
			σ	m =		20	• C(osq)		k	=	Ŀ	+5	ind	リ						h			~~
						(1-	-si	nφ)				(1		ind)								-	

	ļ		ļ																			ļ	ļ		
+																									
	of														016								Ebe		

Rock Support i	n Yielding Rock
	<u>Support 3, having a much lower stiffness</u>
	than support 2, is also installed at F but
	reaches equilibrium with the rock mass at
⊂ ÅA	point D where the rock mass has started
i l	to loosen:
B B C D E E E	Although this may provide an acceptable temporary solution, the situation is a dangerous one because any extra load imposed, for example by a redistribution
$0 \to 0$	of stress associated with the excavation
Radial displacement, δ _i	of a nearby opening, will have to be
	carried by the support elements. In general, support 3 is too compliant for this particular application.
46 of 54	Tunnelling Grad Class (2016) Dr. Erik Eberhardt

<u>_ec</u>	tu	ire	2	<u> Re</u>	fe	er	<u>er</u>		es																
Beave	r, F	P. (972	2). "	ΑH	isto	ory o	of T	unn	els"	. Pe	ter	Dav	ies:	Lon	don	155	pp.							
Bienia 272pp		i, Z	Т (198	4).	"Ro	ck N	Nec ł	nani	cs [Desi	gn i	n Mi	ining	g an	d Ti	Inne	lingʻ	'. A.	A. B	alke	ma: I	Rott	erda	m
Brady Hall, L					n, E	ET (200	94).	Ro	ck I	Mec	han	cs	for	Ünc	lerg	rour	id N	linin	g (3	rd e	d.).	Chap	oman	8
Brown	1, E	T (1	981) . P	ütti	ng '	rhe	NA	ГΜ	into	per	rspe	ctiv	e. T	unn	els i	& Ти	nnel	ling	117	'198	1 1	3-17		
Burlar from																						- Ca	se S	studi	es
Chern Proc.																		ound	anc	sup	port	est	ima	ion.	Ir
Daem	en,	JJI	((1	977) . P	rob	lems	s in	tun	nels	supp	ort	med	har	ics.	Un	derg	rour	id S	pace	1 :1	63-1	172.	-	
Deere syster													& 3	5chi	nidt	, В	(19	70).	De	sign	of	tunr	nel s	uppo	r1
Harri Exam										Eng	inee	ering	g Ro	ock.	Med	char	nics	- Pa	rt	2: I	llust	rativ	ie V	Vork	ec
Hoek,																									
and s Geote																iver	rsity	of	М	inne.	sota	56	th	Anni	Ia
		of																							

Lectur	e Ref	erenc	25				
Hoek, E & G	Guevara, R	(1999). O	rcoming	squeezing i	n the Yacam	bu'-Quibor T	unnel, Venezuela.
Rock Mechai	nics Rock Ei	ngineering,	42 : 389-41	8.			+
Hoek, E, Ko	uiser, PK &	Bawden, V	VF (1995)	. Support	of Undergrou	und Excavatio	ns in Hard Rock.
A.A. Balkema							
Hudson, JA	& Harris	on, JP (19	97). Engi	ineering Ro	ock Mechania	s - An Intr	oduction to the
Principles, El							
Kaiser, PK,	Diederichs	MS, Mar	tin, D, Sh	arpe, J &	Steiner, W	(2000). Unde	rground works in
			In GeoE	ing2000, N	1elbourne. T	echnomic Pub	lishing Company,
Lancaster, p	p. 841-926.						
					methods.]	in Sinha (ea	.), Underground
Structures	Design and	Constructio	on, pp. 403-	-459.			
	L (1965).	The New A	ustrian Tu	nnelling Me	thod. Water	Power, 16 : 4	53-457, 511-515,
17 : 19-24	1	1	++				
Sandström,	G.E. (196	3) . "The His	tory of Tu	nnelling", B	arrie and Roc	kliff: London.	427pp.
Terzagi, K	(1946). Ro	ck defects	and loads	on tunnel	support. In	Proctor & W	hite (eds.), Rock
Tunneling wi	th Steel Su	<i>ipports,</i> pp.	15-99.				
Terzaghi, K	& Peck, R	B (1948). "	Soil mechai	nics in engi	neering pract	ice". Wiley: N	ew York: 566pp
Whittaker	BN & Frith	RG (1990) Tunnel	lina: Desia	Stability a	nd Constructio	n". Institution of
Mining and N					.,,		
+							
- 54 of	EA	-		Grad Clas	(2014)		Erik Eberhard