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Tunnelling &
Underground Design

Topic 6:
Sequential Excavation &
Ground Control
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Ground Reaction - Convergence

A key principle in underground construction involving weak rock is the
recognition that the main component of tunnel support is the
strength of the rock mass and that it can be mobilized by minimizing
deformations and preventing rock mass “loosening”.

Symbols:

0 O = In situ stress level
A = Limit of alastic deformation
ZL = Zone of loosening

2L

Whittaker & Frith (1990)

Deformation

During construction of a tunnel, some
relaxation of the rock mass will occur
above and along the sides of the tunnel. |

I
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Controlling 6round Deformations

In order to preserve the rock mass strehg‘r , by minimizing rock mass

eformations, it is necessary to apply tfemporary support early. Temporary
ort measures may include steel sets, rock bolts, wire mesh and

These temporar y
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Support is added to create a stable
self-supporting arch within the rock
mass over the tunnel opening.

natural arch

= zone of
loosened rock

reinforced

rock arch

zone of rock

'| Forepoling is used to provide an arching
effect in the 34 dimension to control ground
deformations ahead of the tunnel face.

wekimash
~ lunnel

LI 4 Tunnelling 6rad Class (201 . Erik Eberhard

w
o
(4]
3
o

ON
~
3

Early Tunnel Ex  in Weak Rock

Austrian.method

4 2 4

1 Breaking out of the tunnel to full width then
began at the shoulders, working down.

Once the excavation was
fully opened, the
masonry lining was built
up from the foundations
to the crown of the arch
in consecutive 5 m long

sections.

Sandstrom (1963)
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New Austrian Tunnelling Method (NATM)

The|New Austrian Tunnelling Method (NATM) is an approach or philosophy
integrating the principles of rock mass behaviour and the monitoring of this
behaviour-during tunnel-excavation: The word 'method" is a poor choice of
word usage, as the NATM is not a set of specific excavation and support
techniques. Instead, the NATM involves:a combination of many established
ways of excavation and tunnelling, but the difference is the continual

monitoring of the rock movement and the revision of support to obtain the
most stable and economical lining.

What the NATM is not:

- A method (i.e. a set of specific excavation and support guidelines).
- Simply the employment of shotcrete as support.

Rabcewicz (1964):

“A new tunnelling method - particularly adapted for unstable ground -
has been developed which uses surface stabilisation by a thin shotcrete
lining, suitably reinforced by rockbolting and closed as soon as possible
by an invert. Systematic measurement of deformation and stresses
enables the required lining thickness to be evaluated and controlled”.
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New Austrian Tunnelling Method (NATM)
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New Aust mh Tunnelling Metho T™)

Year

Principal development

1948

1954

1958

1960

1962

1964

1848 t01920s

Development of the use of fast setting mortars as a tunnel support;

invention of the cement gun and the registration of palents early

uses of gunite in civil and mining engineering tunnel

Development of concep!s relalmg to controlled rock deformation
and dual lining syst ic anchoring for

tunnelling which were postulated by Hahcewmz

The first application of shotcrete as a supporting element in
squeezing ground in tunnelling was carried out at the F

HEP Project, Austria by Brunner

Brunner filed a patent of this concept of tunnel construction in

squeezing ground and called it the Shotcrete Method

Mueller recognised the roles played by load and deformation
measurements as part of the design process aimed at preventing

excessive rock loading of tunnels and consequently developed a
systematic measuring system which formed part of the process

Rabcewicz first used the term the New Austrian Tt lling Method

whilst speaking at a meeting in Salzburg

er & Frith (1990

NATM achieved worldwide recognition and appears to have

originated from the publication of Rabcewicz [15.7] in connection
with the application of the shotcrete method in the Schwaikheim

Fry

nita

Tunnel which was designed under the guidance of Mueller and
Rabcewicz
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Key Elements of the NATM Philosophy

2)Pr tmary Support:
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Tunnel Measurement Systems

Legend Measuring objective Instrument
1 Deformation of the Convergence tape
excavated tunnel surface Surveying marks
. ! : 2 Deformation of the ground Extensometer ! : 1 :
"""" surrounding the tunnel """"
) . 3 Monitoring of ground Total anchor force ; . 1 :
support element “anchor’ +
4 Monitoring of ground Pressure cells s
. ! : support element “shotcrete Embedments gauge i . ) :
EEEEEEE N shell’ R EEE RS SRR
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Key Elements of the NATM Philosophy

5) Closing of Invert: Closing of the invert to form a load-bearing ring of
the rock mass is essential. In soft iground tunnelling, the invert must be
losed-quickly -andno section-of the excavated surface should be left
unsupported even-temporarily. For rock-tunnels; the rock mass must be

ermitted to deform sufficiently before the support takes full effect.

Crown talures

The 1994 Heathrow tunnel collapse.

3 A review of NATM _
m—— failures found that —_—

in most cases,

Full face failutes

. e failure was a result | .
L ity of collapse at the (L *
: % L | | face where the lining [\
is still weak and —

cantilevered. Losaltace tasures

T‘he‘bu‘ildér dnd n Austrian é:éiﬁéering fi‘rm‘wc‘ls finéd o
' record £1.7m for the collapse, which put lives at risk and

' caused the cancellation of hundreds of flights.

12 of 54 Tunnelling 6rad Class (2016) Dr. Erik Ebe rhﬁrdt




. '
} .

___gKey__El_émnehtis__of_flr_h’e_gNATM__P _ il.o.sdphy....

56) =p<_céynti_on__$e_quenci.élg‘ ..... he izr gth_of the tunnel left: unsuppofr'r d.at:
ﬁ time_during construction should be as s shert as possible. Where
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minimum disturbance of the ground by blasting.
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- NATM: Advantages/Limitations

Advantages: The primary advantage of iNATM is the economy r‘esul'hﬁq :
~ from matching the amount of support installed to the ground o

" conditions, as opposed to installing support for the expected worst
. case scenario throughout the entire tunnel. The safety of the work is
“'more easily assured because the sizes an conflguratlons of the o
" heg dmgs makmg up the total tunnel cross section can be adapted to
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b

_ befween the Owner's and Contractor's engineers in deciding the amount -
" of support to be installed from day to day It is not edsy.to achieve
_ this in the adversarial conditions often encountered. Also, the ‘one |
' man, one job' philosophy of union contracting tends to spoil the »
: economic advan'raqes since most of 'rhe 'ra<.ks are necessarily performed:
§ swquenTualIy some of them by other dees Daily pr‘oduct on rates are"

- often lower, and in soft ground, more support is genemliy required to
: )JPPUI‘:‘ the worki g fuur,“fhml’"h_’shl‘ﬁ driven urqutq; : f ‘ l :
AU O NP 00 TN O O O O SO SO i MQC,U,S,Ke,r,(1,991),
15 e‘ 54. T~ nnelling "r'o.d C'ass(ZOlé) r. EmkEberhe"d

'trollma Gr und eformatlons

3 ve rock mass. sl'r'ength by mlmmlzmg défdr'rra‘l'lons |t;.|s§,,,
to apply support early. Support measures may include

bnl‘ 4§bn:|1'<, wire mesh and shotcrete. These jﬁrc‘r-nn«: support
~ measures are generally expected to be the major load bearing |
,,,,,, component, with secondary support being installed as needed.

[ naluralarch |0
""""" zone of
loosened rock
reinforced : S P S
'''' rock arch
"""""" tightened : TR T
,,,,,,,,, L7 zone ofrock | Sypport is added to
,,,,, shotcrete rockbolt create a stable self-
7777777777 supporting arch within the
rrrrrrrrrr weldmesh excavated | rock mass over the
3 | ? wnnel tunnel/drift opening.
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New Austrian Tunnelling Method (NATM)

The New Austrian Tunnelling Method (NATM) is an approach
integrating the principles of rock mass behaviour and the monitoring
of this behaviour during excavation. It involves the monitoring of
rock mass deformations and the revision of support to obtain the
most stable and economical lining. Thus, the NATM is seen to be
advantageous as the amount of support installed is matched to the
ground conditions, as opposed to installing support for the expected
worst case scenario throughout the entire drift.

Rabcewicz (1964):

"A new tunnelling method - particularly adapted for unstable ground
- has been developed which uses surface stabilisation by a thin
auxiliary shotcrete lining, suitably reinforced by rockbolting: and
closed as soon as possible by an invert. Systematic measurement of
deformation and stresses enables the required lining thickness to
be evaluated and controlled”.
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Ground Reaction - Convergence

In practice, it may not be possible to establish the exact form of
the ground response curve, but we can measure the displacement
that occurs, usually in the form of convergence across an excavation.
The ground response curve and convergence curves are linked because
they are different manifestations of a single phenomenon.

e
e System response curve Convergence curve
| P, d sepl {evolves with excavation {measureable in situ)
L | advance, and hence time) 050
o -EHreneedrig o Ground 8 Ne 1)) NS )
| - 2 response curve o N 8| (13585 o
| Mep 2 2 & ® (8,1,) 2 W
St e = b 5 g S w®
g g ooty i fas)
& > g
| B Dl BN
e & .+ Available & \
—— ] " support line \ (Bsts)
step 4 Boundary displacement Boundary displacement Time
- (evalves with excavation
advance, and hence time)
1 !
L | @ - Hudson & Harrison (1997)
X section XX

Convergence occurs rapidly as excavation proceeds: subsequently the
convergence rate decreases as equilibrium is approached.
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Stresses & Displacements - Circular Excavations

The Kirsch equations are a set of closed-form solutions, derived
from the theory of elasticity, used to calculate the stresses and
displacements around a circular excavation.

2 3at
(1= Kl(] + ‘—i — ‘—:JsinZHJ
r= r

k * P e 2
:> . My = —i(‘}_ [il + K)—(l - KJI-‘J[I -V - :f_ ’unsE!i}
. n.,:—‘::ii [tl—K!IE[I—Ev:+?—§}sin2ﬂ:|
1 Brady & Brown (2006)
Stress ratio
k = ¢,/0,
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Stresses & Displacements - Circular Excavations

From these equations we can see that the stresses on the
boundary (i.e. when r = a) are given by:

cge = pl(1+k) + 2(1-k)cos26]
o, =0

T =0

Note that the radial stresses are zero
because there is no internal pressure,
and the shear stresses must be zero at
a traction-free boundary.
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Conservation of Load =~
ndfhér concept 'rhcf: can be e egarﬁ'ly demonsfraféd from the ]
irsch equations is the principle of conservation of load.

NMECH. o WO et E
- r'mcrple of conser'vatlon
"""" }""of load before and after
""" - excavation. The sketches
A“?“show how the distribution -
~of vertical stresses © Arcas cqual = P8 ]
""" across a horizontal plane
”“@“Changes. I _
o : Diameter = 2a I

Hudson & ;Hw ison .(,19.:9.7). AN

T elling Grad C?as;--(&Olé) r Eff'-ik--:Ebe)r-'-hérd

.| Potential Ground Control Issues: | .

N ; o ! g Destressing = wedge failures |-
Concentration = spalling | |

stress
concentration

,,,,, \ " y \
stress )
\\, concentration /! destressing

visualized as flowing ar'ound the excavation periphery in the

Stresses can be
major principle stress (o;). Where they diverge, relaxation

~ | direction of the

: occurs; where they converge, stress increases occur.
;n‘ZZOf 54  Tunnelling Grad Class (2016)  Dr. Erik Eberhardt




T é Sta iIi ion Strateqy

 The effecfs of excavation (displacements, stress changes, etc.), and the
- optimal stabilization strategy to account for them, should not blindly
~ attempt to maintain the original conditions (e.g. by installing massive
~ support or reinforcement and hydraulically sealing the entire excavation).
~As the displacements occur, engineering judgement may determine that They
- can ‘be allowed to develop fully, or be con'rrolled later.

I
|—| Reinforcement: the primary objective is to
| mobilize and conserve the inherent
strength of the rock mass so that it
becomes self-supporting.

Reinforce

Support: the primary objective is to truly |
support the rock mass by structural
elements which carry, in whole or part,
the weights of individual rock blocks
isolated by discontinuities or of zones of
loosened rock.

Kaiser et al. (2000
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Tunnel Support Principles

Consider a tunnel being advanced by conventional methods, where
steel sets are installed after each drill & blast cycle.

T i N ]]]@P°]]
LN J - e !
* section X-X I L o :
| pC i ,l PKT \\ i
i 1
Ei>i - \r‘ ) i<ﬁ3
N Step 1: The heading has not reached X-X £ B e E
=t and the rock mass on the periphery of the Lo e
§| |future tunnel profile is in equilibrium with %
S the internal pressure (p;) acting equal and
2 pposite -to-p,-
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Tunnel Support Principles

VCons‘ider' a funnel being advanced by conventional methods, where
‘steel sets are installed after each drill & blast cycle.

[

n
BEE L

[T M 1

(I ] ar P

|

| 1
1
! !
I
i !
x- section X-X |:$ : 1 <::|
1
i :
1
i 1

Step 2: The face has advanced

beyond X-X and the support oo st

pressure (pl) pr‘ovided by the rock Direction of tunnel advance ——»
inside the tunnel has been reduced

fo zero. Given that the blasted &
Stable tunnel § ™"

rock must be mucked out before
the steel sets can be installed, Supported tunnel ¢ _ _ _ _ - - -z
deformation of the excavation Unstable tunnel

boundaries starts to occur.

. Daemen (1977)

Displacement
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Tunnel Support Principles

We can then plot the radial support pressure (p;) required to limit
the boundary displacement () to a given value.

Radial

X displacement
T bA (pi= po) = excavated
I'J“‘“I“ :_'___i s g | . E i profile
I : ol
| M] D o g g 3 required support line l_q_..___! ~tunnel profile
X~ section X-X = for wanel roof
£
~ g e
,l: = support
S
£
Y
8 radial displacement, &
Thus, by advancing the excavation and removing the internal support
pressure provided by the face, the tunnel roof will converge and
displace along line AB (or AC in the case of the tunnel walls; the roof
deformation follows a different path due to the extra load imposed by
gravity on the loosened rock in the roof).
9 " 26 of 54 Tunnelling 6rad Class (2016) Dr. Erik Ebe rhﬁrdt
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T rinel Support

Princi

ples

“the %D\oundqry‘ displacement (5;)

‘We can then plot the radial support pressure (p;) required to limit

to a given value.

X

L]
T [
LI

X

|

Daemen (1977)

section X=X

Radial support pressure, p,

displacement
bA (p; = po) _excavated
E profile
3.8
£E:3 ' el profile
LR required support line F=——ae—— Tunnci profiie
for wanel roof
support
C
/
= | support
. &| linefor
'g 2 5| side wall
Zel
ez E
4

Radial

radial displacement, &

By Step 3: the heading has been mucked out and steel sets have
been installed close to the face. At this stage the sets carry no
load, but from this point on, any deformation of the tunnel roof or
walls will result in loading of the steel sets.

LF % oo
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Tunnel Support

Principles

at
g

X

1 stepd

section X=X

We can then plot the radial support pressure (p;) required to limit
the boundary displacement (5;) to a given value.

Radial support pressure, p,

bA (pi= po)

deformation

pressure

|
required support line &
for wanel roof

C

Daemen (1977)

boundaries occurs.

In Step 4: the heading is advanc
one and a half tunnel diameters
beyond X-X by another blast. The
restraint offered by the proximity
of the face is now negligible, and
further convergence of the tunnel

C

Q

/
support E:
line for ea H -

. side wall ST —e=
~
.
-,
-
~ S WG

Radial
displacement
_excavated
profile

radial displacement, &

If steel sets had not been installed, the
radial displacements at X-
increasing along the dashed lines EG and
FH. In this case, the side walls would reach
equilibrium at point 6. However, the roof
would continue deforming until it failed.

X would continue

28 of 54
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Tunnel Support Principles

‘We can then plot the radial support pressure (p;) required to limit
_the boundary displacement (5;) to a given value.

Radial
displacement
bA (B = po) = _excavated

o profile

B
£
rmation

S vi%s i \
) ETESES |
wp2 || 2 P FEE i e
i E LR required support line F==———=— manel proiie
e for wanel roof
\ - B support
| LLLLLLLLTS ¢
R 3 o
£ Suppi
o step 4 line for -
SIILLIIL | (- 3, G HER S s
S x- section X-X Sy
g SNa G
8 radial displacement, &

.. but with steel sets installed, the tunnel

convergence will begin to load the support.

This load path is known as the support reaction line (or available support
line). The curve representing the behaviour of the rock mass is known as
the ground response curve (or support required curve).

=
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Tunnel Support Principles

We can then plot the radial support pressure (p;) required to limit
the boundary displacement (5;) to a given value.

Radial
X displacement
L] - L 2
By e - = profile
| - -
i < | e f ' “,..
gvIERE |
step2 3 EFeT |
£ ot required support line  FE===—= tunnel profile
e for wanel roof
= g support
R 3 o
5 | suppor
o ep s | linefor
gL | (Y~ 12, LHEL S a-
5 X= section X=X s
£ B
5 B ¢
8 radial displacement, &

Equilibrium between the rock and steel sets
is reached where the lines intersect.

It is important to note that most of the redistributed
stress arising from the excavation is carried by the
rock and not by the steel setsl!

30 of 54 Tunnelling 6rad Class (2016) Dr. Erik Eberhardt
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Ground Response Curve

Consider the stresses and displacements induced by
excavating in a continuous, homogeneous, isotropic, linear

elastic rock mass (CHILE). The radial boundary

displacements around a circular tunnel assuming plane strain

conditions can be calculated as:

1, = (R/E)[0y + Gy + 2(1 = V¥)(01 — G3)cos 26 — VO3]

where R is the radius of the opening,
oy and o, are the far-field in-plane principal stresses,
0, is the far-field anti-plane stress,
01is indicated in the margin sketch, and
E and v are the elastic constants.

tunnelling projects.

Where the ground response curve intersects the
boundary displacement axis, the u, value,
represents the total deformation of the boundary
of the excavation when support pressure is not
provided. Typically only values less than 0.1% of
the radius would be acceptable for most rock

Support pressure

Unstable
non-elastic

Stable
non-elastic

Boundary displacement

Hudson & Harrison (1997)

Q«
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Support Reaction Curve

If support is required, we can gain
an indication of the efficacy of
particular support systems by
plotting the elastic behaviour of
the support, the available support
line, on the same axes as the
ground response curve. The points
of interest are where the available
support lines intersect the ground
response curves: at these points,
equilibrium has been achieved.

Support pressute p;  —jg-

support system yield

Inward radial displacement , et

Hoek et al. (1995)
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Worked Example: Rock-Support Interaction

Q. A circular tunnel of radius 1.85 m is excavated in rock subjected to
an initial hydrostatic stress field of 20 MPa and provided with a
concrete lining of internal radius 1.70 m. Assuming elastic behaviour
of the rock/lining, calculate/plot the radial pressure and the radial
displacement at the rock lining interface if the lining is installed after
a radial displacement of 1 mm has occurred at the tunnel boundary.

A. Given: p = hydrostatic stress
P a = tunnel radius
26 G = shear modulus-(assume 2 GPa)
p.-=-radial support.pressure
P Sl k = lining stiffness
Pr=5 u, = rock displacement when support
installed
E. @ —(a—1) t. = concrete lining thickness

E. = lining elastic imodulus (assume 30 GPa)

k=
_ 21 (a—1)7
L4 v (1 —2v)a* + (@ = %)" = "< Jining Poisson ratio (assume 0.25)

;IE‘ 33 of 54 Tunnelling Grad Class (2016) Dr. Erik Eberhardt

Worked Example: Rock-Support Interaction

A.  To find the ground response curve we need to identify the two end
points of the line: one is the in situ condition of zero displacement at a
radial stress of 20 MPa, the other is the maximum elastic
displacement induced when the radial stress is zero.

20e6Pa)(1.85m
@ u =P gy = MLESM) _ 4 00925m
2G 2-(2e9 Pa)
25— —_———— =
@) Plotting our ground

response line, we have ¥ B = = -
two known points: g ‘fg - - %
p,=20MPa - |: - |3
u = 0mm ! 3
- x
p,=0MPa-— i e
u, = 9.25mm o e ‘é
10 12 14 16| &
radial displacement, mm I
@‘ 34 of 54 Tunnelling 6rad Class (2016) Dr. Erik Eberhardt
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Worked Example: Rock-Support Interaction

A. To find the support reaction line, we assume the lining behaves as a
thick-walled cylinder subject to radial loading. The equation for the
lining characteristics in this case is:

po Ee a* —(a—t)’
14w (1= 2w) a? + (a — t)?

)| Solving for the stiffness of the lining, where t. = 1.85 -
1.70 = 0.15 m, E, = 30 GPa and v. = 0.25, we get:

_ 30GPa [ (1.85m)* = (1.85m —0.15m)? }

T 1+0.25 | (1-0.5)(1.85m)* + (1.85m — 0.15m)>
k =2.78 GPa
;IE‘ 35 of 54 Tunnelling Grad Class (2016) Dr. Erik Eberhardt

Worked Example: Rock-Support Interaction

A. 3 Thus, for a radial pressure of 20 MPa and u, = 1 mm, the lining will
deflect radially by:

U — Uy a 1.85m
=k u =—p +u =—20e6 Pa+0.001m
Pr - U Pt = e Pa
u = 0.014m

@ Plotting our support
reaction line, we have

209 e Y C W

two known points: g —F =
%’" 15 e g

p,=20MPa | |[§.-- <
u, = 0.014 mm g ~~ Operating point: ;';'
s _ . u=5.9mm, p=7.3MPa |

p, =0 MPa §
______________ o . . e ‘ ‘ e

u. = 1 mm 0 2 4 6 8 10 12 14 16 5
radial displacement, mm I
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Worked Example: Rock-Support Interaction

Harrison & Hudson (2000)

25 —

7

radial pressure, MPa
—
=]

)&ﬁ\// Operating point
_u=5.9mm MMG

oint:

IR = SN

radial d|sp|acemenl mm

_This shows how, by
delaying the installation of

7
1 mm displacement of
tunnel boundary before

the-lining,-we-can reduce
the pressure it is required
to withstand - but at the

lining is installed expense of increasing the

final radial displacement.

Sl

Tunnelling Grad Class (2016) Dr. Erik Eberhardt

Rock Support in Yielding Rock

Thus, it should never be attempted to achieve zero displacement by
introducing as stiff a support system as possible - this is never
possible, and will also induce unnecessarily high support pressures.
The support should be in harmony with the ground conditions, with
the result that an optimal equilibrium position is achieved.

In general, it is better to »1

allow the rock to displace . e Tttt oo

to some extent and then g 5.5 B.2MP =

ensure equilibrium is F "1 B

achieved before any 0 A

deleterious displacement of ¢ 4#}=— Operating point:

the rock occurs s - D i

0o S — T v 1

S 2 4 6 8 10 12 14 16
v radial displacement, mm

Hudson & Harrison (1997)
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Ground Response Curve - Yielding Rock

not necessarily mean collapse of the tunnel.
The yielded rock may still have considerable
strength and, provided that the plastic zone is
small compared with the tunnel radius, the only
evidence of failure may be some minor spalling.
In contrast, when a large plastic zone forms,
large inward displacements may occur which
may lead to loosening and collapse of the
tunnel.

Support pressure p,  ——pm—

Note that plastic failure of the rock mass does Py py s )

-

w, - clastic displacement

. -criical support pressare defined by
initiation of plastic failure of the
rock surrounding the tunnel

Hoek et al. (1995)

. 4y, - Plastic displacement.

Curve 1: 'perfect’ excavation
Curve 2: machine excavation
Curve 3: good quality blasting

X

% ] Curve 4: poor quality blasting

< 2 [ \

al 8

a2 £ ;

5§ s Effect of excavation methods on shape of
5| B Curve4| the ground response curve due induced

5 s Curve 3 damage'and alteration of rock mass

e

2 Boundary displacement | pr‘oper‘hes :
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Ground Response Curve - Plastic Deformation

To ‘account for plastic deformations; a yield O
criterion -must be-applied.“If the onset of
plastic failure is defined by the Mohr-Coulomb
criterion, then:
Oy = Gy *+ ko3 Ocm
rock mass

ves

A

—— > Gy

The uniaxial compressive strength of the rock mass (G.,) and the slope of

the failure envelope is in' c,-c; space is:

G = 2c- cosd e (1+sind)
(1-sind) (1-sind)

@‘ 40 of 54 Tunnelling 6rad Class (2016)

Dr.. Erik Eberhardt
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Ground Response Curve - Plastic Deformation

Now- assuming that a circular tunnel of radius r,
is subjected-to-hydrostatic stresses-(p,), failure
of the rock mass surrounding the tunnel occurs
when the internal pressure provided by the tunnel
lining is less than the critical support pressure,
which is defined by:

- 2p[l 76{‘"'
Per = I+k
If p; > p... then the deformation of the rock r,(1+v)
mass and inward radial displacement is elastic: be=""p  (P,=p)

If pg > p;. then the radius-of the-plastic - -
zone around the tunnel is given by: — 2p,(k-D+0,,) ]“ b
P "_(1+k)((k—-l)p'+0 )

cm

;@. 41 of 54 Tunnelling Grad Class (2016) Dr. Erik Eberhardt

Ground Response Curve - Plastic Deformation

The total inward radial displacement of the tunnel g Po

Pt 'Y

roof and walls is then given by:

r(1+v) "p ’
uy = 21=-v)(p,=p,)|— | —(=2v)(p,-p;)

’
T _ Py = P, (in situ stress)

0
' #, - elastic displacement

——

This plot shows zero displacement
vhen the support pressure equals the
ydrostatic stress (p;=p,). elastic
lisplacement for p,>p;>p... plastic
isplacement for p;<p.., and a
naximum displacement when the
support pressure equals zero.

Py - critical support pressure defined by
initiation of plastic failure of the
rack surrounding the tunnel

Support pressure p;

P uy, - plastic displacement

00 S A

Inward radial displacement u;  ———J-

D)
Hoek et al. (1995)
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Rock Support in Yielding Rock

~ Another important concldsidn dr‘dwn from these curves, for the case
~of unstable non-elastic conditions, is that stiff support (e.g. pre-
cast concrete segments) may be successful, but that soft support

(e.g. steel arches) may not bring the system to equilibrium.

: - y One of the primary
_ shoterete i 5
| e functions of the suppor
) is to control the inward
3 displacement of the wal
i to prevent loosening.
E: rock bolt possible buckling R
_? failure
Blocked steel sets H ; S support
£
[ ] g‘ Yielding support Il
Radial displacement. 5, 3 Soft support
Bu"‘\.dy’ & Browr (2 D04 Boundary displacement
()}« T 1
r 3 of 54 Tunnelling 6Grad Class (2016) r. Erik Eberhard

Summary: Rock Support in Yielding Rock

Support 1 is installed at F and reaches
equilibrium with the rock mass at point B:
This support is too stiff for the purpose and
attracts an excessive share of the
redistributed load. As a consequence, the
support elements may fail causing catastrophic
__failure of the rock surrounding the excavation.

Radial support pressure, p;

F G
Radial displacement, &

o

Brady & Brown (2004)
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,,,Rocik,,§,5uppor,t,,§in§,,y?ieldi,ﬂq{,Rjo,c:k;,,,; ,,,,,,,, UL U O

Support 2 havmg a Iower shffness is
_installed at F and reaches equilibrium with
: the rock mass at pomt C

-——this system provides a good solution. The
~-rock mass carries a major portion of the
- redistributed load, and the support

rrrrrr }r—rrelements are not stressed excess:vely

Radial support p

i Note that if this suppor’r was 'remporar'y and was
.| to be removed after equilibrium had been

| reached, uncontrolled displacement and collapse

| of the rock mass would almost certainly occur.

;ﬂ‘ 45.0f 54 ... . Tunnelling 6rad Class (2016) .. .......Dr. Erik Eberhard

Rock S pport m Yualdma Ro k.

Sugg 6’r"f’3"'th|'ng a much Iower‘ shffness :

O R R e Support 3. having a much lower stiffness
T L " than support 2, is also installed at F but

" reaches equilibrium with the rock mass at

) ~ point D where the rock mass has started
""""" S """f""'l'o Ioosen ‘
| E "j"AIthough thls may prowde an acceptable """"
"""" g - temporary solution, the situation is a
"""" Z ' dangerous one because any extra load
2 ~imposed, for example by a redistribution
"""" » [7~of stress associated with the excavation
o F . .
"""" ~of a nearby opening, will have to be

T " carried by the support elements. In

- general, support 3 is too compliant for

“this part:cular apphcatlon
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Summary: Rock Support in Yielding Rock

Support 4, of the same stiffness as support 2,
is not installed until a radial displacement of
the rock mass of O6 has occurred. :

In this case, the support is installed late,
excessive convergence of the excavation will
occur, and the support elements will probably
become overstressed before equilibrium is
- p reached.

Radial displacement, &

Radial support pressure. p;

Brady & Brown (2004)
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Squeezing Ground Behaviour
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Squeezing Ground Behaviour

Hoek & Guevara (2009)

Squeezing ground refers :: Assuming
to weak rock under high no support
stresses, which causes
the [rock mass to
undergo large
deformations. This
squeezing action may
result in damage or
failure of the ground
support system, or
require the costly re-

Strain greater than 10%
12 Extreme squeezing problems

Strain between 5% and 10%

Very savere squeezing problems

Strain between 2.5% and 5%
Severe squeezing problems

tunnel closure / tunnel diameter * 100

&

excavation of the tunnel » |
section. g Mir seseesing rablens
Strain less than 1%
1 Few support problems
1] A i I I A A J
01 0.2 0.3 0.4 05 08
Dol P = Fock mass strength / in situ stress
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Squeezing Ground Behaviour

Hoek & Guevara (2009)

5 . [ [T T 7T
i’ 10 ! &  Tunnels wilh statility protiems i
g — - 1H — 1 C Tunnels with no stability problems i
= L
% : J4 L._C i QI
o o]
T, Lol 20 1
% ,LO?\—:F b | (‘) -
w et b0 !
7 — of B St
(=]

o i

[*N] 1 0 102

Uniaxial compressive strength of rock mass o, - MPa Fie'd Observa'ﬁons f[‘om

several tunnels in Taiwan.
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~ Squeezir

Hoek ef al. (2008)

CP 160

steel setsv w

s’-'ﬂr'ng ga

P -
Slittine
h - mg}o:n, clam,
t ‘ P

_4’4

-

Extreme squeezing requires the use of yielding support in order to

|accommodate these large deformations.

54.
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