Ground Reaction - Convergence

A key principle in underground construction involving weak rock is the recognition that the main component of tunnel support is the strength of the rock mass and that it can be mobilized by minimizing deformations and preventing rock mass “loosening”.

During construction of a tunnel, some relaxation of the rock mass will occur above and along the sides of the tunnel.
Terzaghi’s Rock Load

Terzaghi (1946) formulated the first rational method of evaluating rock loads appropriate to the design of steel sets.

The movement of the loosened area of rock (acdb) will be resisted by friction forces along its lateral boundaries and these friction forces help to transfer the major portion of the overburden weight onto the material on either side of the tunnel.

As such, the roof and sides of the tunnel are required only to support the balance which is equivalent to a height H_p. Terzaghi related this parameter to the tunnel dimensions and characteristics of the rock mass to define a series of steel arch support guidelines.

<table>
<thead>
<tr>
<th>Rock Condition</th>
<th>Rock load H_p in ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hard and intact</td>
<td>Zero</td>
<td>Light lining required only if spalling or spalling occurs.</td>
</tr>
<tr>
<td>2. Hard stratified or schistose</td>
<td>0 to 0.5B</td>
<td>Light support, mainly for protection against spalls. Load may change erratically from point to point.</td>
</tr>
<tr>
<td>3. Massive, moderately jointed</td>
<td>0 to 0.25B</td>
<td>No side pressure.</td>
</tr>
<tr>
<td>4. Moderately blocky and sandy</td>
<td>0.25 to 0.75($B + H_p$)</td>
<td>Little or no side pressure.</td>
</tr>
<tr>
<td>5. Very blocky and sandy</td>
<td>0.75 to 1.0($B + H_p$)</td>
<td>Considerable side pressure. Softening effects of seepage and bottom of tunnel regime either continuous support for lower ends of ribs or circular ribs.</td>
</tr>
<tr>
<td>6. Compressively crushed</td>
<td>1.0($B + H_p$)</td>
<td>Heavy side pressure, inset stress required. Circular ribs are recommended.</td>
</tr>
<tr>
<td>7. Squeezing rock, moderate depth</td>
<td>(1.0 to 2.0($B + H_p$))</td>
<td>Circular ribs are required. In extreme cases, use yielding support.</td>
</tr>
<tr>
<td>8. Squeezing rock, great depth</td>
<td>(2.0 to 4.5($B + H_p$))</td>
<td>Up to 200 fath, irrespective of the value of ($B + H_p$).</td>
</tr>
</tbody>
</table>

Deere et al. (1970)
Tunnelling in Weak Rock

Terzaghi's "Rock Load" implicitly relates the benefits gained through the ground's natural tendency to arch. The essence of tunnelling in many respects is to disturb the natural arch as little as possible while excavating the material.

In weak rock, ground loosening breaches the integrity of this natural arch. The consequence is that without supporting the excavation soon after it is completed - the walls may squeeze together and the roof collapse.

Besides the strength of the rock mass, a second key factor controlling the extent of loosening is the size of the excavation. Several difficulties relating to the size of the face include:

- increased volume of ground disturbed
- decreased accessibility to all parts of the face
- increasing difficulty in supporting and controlling face stability

Building on Past Experiences – Ground Control
Early Tunnel Experiences in Weak Rock

Through much trial and error, the lesson commonly learned was that with a small tunnel face, the volume of ground moving and relaxing is also smaller and can often be tolerated or kept within acceptable limits by relatively simple timbering or other temporary support.

Belgium method

The method was first employed in building the Chaleroy tunnel (in Belgium) in 1828. The great advantage claimed for the system by Belgian and French engineers was the speed whereby the roof of the tunnel could be secured, a desirable advantage in poor rock.

The method fell out of favour as a result of catastrophic experiences encountered during the construction of the Gotthard Tunnel (1872–1882). The key problem was that the sequencing following Stage 3 required the arch to be underpinned. However, this proved difficult in the yielding ground conditions encountered, leading to the timbers giving way, followed by the cracking or total collapse of the masonry arch.
Early Tunnel Experiences in Weak Rock

German system

The “German System” introduced the principle of leaving a central bench of ground to be excavated last and to use it to support roof and wall timbering.

This allowed the arching to be built in one operation, unlike the Belgium method which had the disadvantage of building the arch and walls separately.

The German system proved disastrous when applied to the Cžernitz tunnel in Austria (1866), where the timbers supporting the heading either pushed into the core, whereupon they became loose, or were crushed by swelling pressures that developed in the core.

Early Tunnel Experiences in Weak Rock

Austrian method

The “Old” Austrian Tunnelling Method was first used for the Oberau tunnel in 1837, which was constructed through marls, gneiss and granite. The method differed from others in that it required the full section to be excavated before the masonry was added, with the excavation being carried out in small sections.

A centre-bottom heading was first driven for a distance of about 5 m. This ‘pilot tunnel’ served to ventilate the workings, drain the surrounding area, and establish the tunnel alignment.

A centre-top heading then followed (driven for the same distance). Section 3 was then removed by men working from the top heading, enabling the top structures to rest on the undisturbed timbers below.
Early Tunnel Experiences in Weak Rock

Austrian method

Once the excavation was fully opened, the masonry lining was built up from the foundations to the crown of the arch in consecutive 5 m long sections.

Breaking out of the tunnel to full width then began at the shoulders, working down.

Sequential Excavation Methods (SEM)

Although the use of these early systems eventually died out due to the huge quantity and high cost of timber required, and the replacement of masonry linings with concrete, their underlying principles still live on. That is the benefits of driving one or more small headings that are later enlarged, enabling for ground deformations to be controlled better.
The Observational Method in Design

In the 1940's, Karl Terzaghi introduced a systematic means to solve geotechnical problems in the face of geological uncertainty, referring to it as the "observational method" (paraphrased here):

"In geotechnical engineering, a vast amount of effort goes towards securing roughly approximate values for required parameter inputs. Many additional variables are not considered or remain unknown. Thus, the results of computations are no more than working hypotheses, subject to confirmation or modification during construction."

"These uncertainties require either the adoption of an excessive factor of safety, or else assumptions based on general experience. The first of these is wasteful; the second is dangerous as most failures occur due to unanticipated ground conditions."

"As an alternative, the observational method, provides a 'learn as you go' approach. The procedure for this is to base the design on whatever information can be secured, making note of all possible differences between reality and the assumptions (i.e. worst case scenarios), and computing for the assumed conditions, various quantities that can be measured in the field. Based on the results of these measurements, gradually close the gaps in knowledge and, if necessary, modify the design during construction."

Terzaghi & Peck (1948)

In brief, the complete application of the method embodies the following components:

a) Sufficient exploration to establish the general nature, pattern and properties of the soil deposits or rock mass;
b) Assessment of the most probable conditions and the most unfavourable conceivable deviations from these conditions;
c) Establishment of the design based on a working hypothesis of behaviour anticipated under the most probable conditions;
d) Selection of quantities to be observed during construction and calculation of their anticipated values on the basis of the working hypothesis;
e) Calculation of values of the same quantities under the most unfavourable conditions compatible with the available subsurface data;
f) Selection in advance of a course of action or modification of design for every foreseeable significant deviation of the observational findings from those predicted on the basis of the working hypothesis;
g) Measurement of quantities to be observed and evaluation of actual conditions;
h) Modification of design to suit actual conditions.
Observation Method Example - Jubilee Extension

The Jubilee Line Extension to the London Underground, started in 1994 and called for twin tunnels 11 km long, crossing the river in four places, with eleven new stations to be built, eight of which were to be underground. One of the more problematic of these was a station placed right opposite Big Ben.

The technical implications were immense. Built in 1858, Big Ben is known to be on a shallow foundation. It started to lean towards the North shortly after completion. Any ground movement in the vicinity would exaggerate this lean, and threaten the stability of the structure.
Observation Method Example – Jubilee Extension

To deal with excavation-induced settlements that may irreversibly damage historic buildings in the area, the design called for the use of compensation grouting during tunnelling. In this process, a network of horizontal tubes between the tunnels and the ground surface is introduced, from which a series of grout holes are drilled. From these, liquid cement can be injected into the ground from multiple points to control/prevent movement during excavation of the main tunnels.

Instrumentation was attached to Big Ben and to the buildings in the vicinity to measure movement (with some 7000 monitoring points), and computers were used to analyze the data to calculate where and when the grout has to be injected.

For Big Ben, a movement of 15 mm at a height of 55m (approximately the height of the clock face above ground level) was taken to be the point at which movement had to be controlled. Throughout the 28 month construction period, experience had to be gained as to which tube to use for grouting, the volume of grout to be injected and at what rate.
Observation Method Example – Jubilee Extension

It was calculated that without the grouting, the movement of Big Ben would have gone well over 100 mm, which would have caused unacceptable damage.

Following construction, the grouting pipes were left in place and monitoring continued. Thus, compensation grouting can be restarted if required. However, instrumentation is showing that no further grouting is necessary.

Controlling Ground Deformations

In order to preserve the rock mass strength, by minimizing rock mass deformations, it is necessary to apply temporary support early. Temporary support measures may include steel sets, rock bolts, wire mesh and shotcrete. These temporary support measures are generally seen as the major load bearing component, with the primary concrete lining being erected after the tunnel has become stable. The primary role of this lining is to seal the tunnel and to provide a partial load bearing component.

Support is added to create a stable self-supporting arch within the rock mass over the tunnel opening.

Forepoling is used to provide an arching effect in the 3rd dimension to control ground deformations ahead of the tunnel face.
The New Austrian Tunnelling Method (NATM) is an approach or philosophy integrating the principles of rock mass behaviour and the monitoring of this behaviour during tunnel excavation. The word ‘method’ is a poor choice of word usage, as the NATM is not a set of specific excavation and support techniques. Instead, the NATM involves a combination of many established ways of excavation and tunnelling, but the difference is the continual monitoring of the rock movement and the revision of support to obtain the most stable and economical lining.

What the NATM is not:
- A method (i.e. a set of specific excavation and support guidelines).
- Simply the employment of shotcrete as support.

Rabcewicz (1964):
“A new tunnelling method – particularly adapted for unstable ground – has been developed which uses surface stabilisation by a thin shotcrete lining, suitably reinforced by rockbolting and closed as soon as possible by an invert. Systematic measurement of deformation and stresses enables the required lining thickness to be evaluated and controlled.”
New Austrian Tunnelling Method (NATM)

<table>
<thead>
<tr>
<th>Year</th>
<th>Principal development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>Development of the use of fast setting mortars as a tunnel support; invention of the cement gun and the registration of patents; early uses of gunite in civil and mining engineering tunnel operations</td>
</tr>
<tr>
<td>1948</td>
<td>Development of concepts relating to controlled rock deformation and dual lining system involving systematic anchoring for tunneling which were postulated by Rabcewicz</td>
</tr>
<tr>
<td>1954</td>
<td>The first application of shotcrete as a supporting element in squeezing ground in tunneling was carried out at the Runserau HEP Project, Austria by Brunner</td>
</tr>
<tr>
<td>1958</td>
<td>Brunner filed a patent of this concept of tunnel construction in squeezing ground and called it the Shotcrete Method</td>
</tr>
<tr>
<td>1960</td>
<td>Mueller recognised the roles played by load and deformation measurements as part of the design process aimed at preventing excessive rock loading of tunnels and consequently developed a systematic measuring system which formed part of the process</td>
</tr>
<tr>
<td>1962</td>
<td>Rabcewicz first used the term the New Austrian Tunnelling Method whilst speaking at a meeting in Salzburg</td>
</tr>
<tr>
<td>1964</td>
<td>NATM achieved worldwide recognition and appears to have originated from the publication of Rabcewicz (1964). In connection with the application of the shotcrete method in the Schwechat tunnel which was designed under the guidance of Mueller and Rabcewicz</td>
</tr>
</tbody>
</table>

Key Elements of the NATM Philosophy

1) Mobilization of Strength: The inherent strength of the rock surrounding the tunnel should be conserved and mobilised to the maximum extent possible (i.e., controlled deformation of the ground is required to develop its full strength). Primary support is directed to enable the rock to support itself. It follows that the support must have suitable load-deformation characteristics and be placed at the correct time.
Key Elements of the NATM Philosophy

2) Primary Support:
Minimization of ground loosening and excessive deformations may be achieved in various ways, but generally a primary support system consisting of systematic rock bolting and a thin semi-flexible shotcrete lining is used. Whatever support is used, it is essential that it is placed and remains in physical contact with the ground and deforms with it.

While the NATM generally includes shotcrete, it does not mean that the use of shotcrete constitutes the NATM.

3) Flexible Support: The NATM is characterized by versatility/adaptability leading to flexible rather than rigid tunnel support. Thus strengthening is not by a thicker concrete lining but a flexible combination of rockbolts, wire mesh and steel ribs. The primary support will partly or fully represent the total support required and the dimensioning of the secondary support will depend on measurement results.

4) Measurements: The NATM requires the installation of instrumentation at the time the initial support is installed to monitor deformations and support loads. This provides information on tunnel stability and enables optimization of the load bearing rock mass ring.
Key Elements of the NATM Philosophy

5) Closing of Invert: Closing of the invert to form a load-bearing ring of the rock mass is essential. In soft ground tunnelling, the invert must be closed quickly and no section of the excavated surface should be left unsupported even temporarily. For rock tunnels, the rock mass must be permitted to deform sufficiently before the support takes full effect.

The 1994 Heathrow tunnel collapse.

A review of NATM failures found that in most cases, failure was a result of collapse at the face where the lining is still weak and cantilevered.

The builder and an Austrian engineering firm was fined a record £1.7m for the collapse, which put lives at risk and caused the cancellation of hundreds of flights.
6) Excavation Sequencing: The length of the tunnel left unsupported at any time during construction should be as short as possible. Where possible, the tunnel should be driven full face in minimum time with minimum disturbance of the ground by blasting.

7) Contractual Arrangements: Since the NATM is based on monitoring (i.e., observational approach), changes in support and construction methods should be possible and worked into the contractual system. All parties involved in the design and execution of the project—design and supervisory engineers and the contractor’s engineers and foremen—must understand and accept the NATM approach and adopt a cooperative attitude to decision making and the resolution of problems.
NATM: Advantages/Limitations

Advantages: The primary advantage of NATM is the economy resulting from matching the amount of support installed to the ground conditions, as opposed to installing support for the expected worst case scenario throughout the entire tunnel. The safety of the work is more easily assured because the sizes and configurations of the headings making up the total tunnel cross section can be adapted to the degree of instability of the working face.

Disadvantages: One of the chief problems is the need for cooperation between the Owner's and Contractor's engineers in deciding the amount of support to be installed from day to day. It is not easy to achieve this in the adversarial conditions often encountered. Also, the 'one man, one job' philosophy of union contracting tends to spoil the economic advantages since most of the tasks are necessarily performed sequentially, some of them by other trades. Daily production rates are often lower, and in soft ground, more support is generally required to support the working face, than with shield driven tunnels.

McCusker (1991)

Squeezing Ground Behaviour
Squeezing Ground Behaviour

Squeezing ground refers to weak rock under high stresses, which causes the rock mass to undergo large deformations. This squeezing action may result in damage or failure of the ground support system, or require the costly re-excavation of the tunnel section.

Field observations from several tunnels in Taiwan.
Extreme squeezing requires the use of yielding support in order to accommodate these large deformations.
Lecture References

