
INTRODUCTION
Observations of fault size, specifically dis-

placement and length distributions, provide im-
portant constraints on physical models of fault
growth as well as tests of model predictions.
Numerical and clay models of fault-population
evolution show that the size distribution of
cracks has a transition from power law to expo-
nential with increasing strain (Spyropoulos,
1999; Spyropoulos et al., 1999; Ackermann et al.,
1997), and that crack density has a maximum
value (Spyropoulos et al., 1999). Most observa-
tions of fault populations growing in low-strain
regions show power law frequency-length scal-
ing (Scholz and Cowie, 1990; Scholz et al.,
1993; Scholz, 1997; Bohnenstiehl and Kleinrock,
1999). In higher strain settings, such as along
the flanks of some mid-ocean ridges, faults have
been observed to follow exponential frequency-
size distributions (Cowie et al., 1993; Carbotte
and Macdonald, 1994). Although Spyropoulos
et al. (1999) suggested that these observations
represent the end-member cases of their model
observations, nowhere has this transition been
observed in a single tectonic setting.

Another important scaling characteristic of
fault populations is the linear relationship be-
tween fault displacement and length (Cowie and
Scholz, 1992a; Dawers et al., 1993; Schlische
et al., 1996). However, large variations in dis-
placement:length ratios have been observed
(Walsh and Watterson, 1988; Marrett and All-
mendinger, 1991; Cowie and Scholz, 1992b;
Gillespie et al., 1992). Much of the variation
within similar tectonic settings has been attrib-
uted to fault interaction (Dawers and Anders,
1995; Cartwright et al., 1995; Wojtal, 1996;
Willemse et al., 1996). Interaction can account
for at least half the scatter in displacement:length

ratios (Cartwright et al., 1995; Willemse et al.,
1996; Gupta and Scholz, 2000). Poulimenos
(2000) observed that higher displacement:length
ratios correlate with high brittle strain regions in
the Western Corinth graben, Greece. He is the
first to link increasing strain to changes in dis-
placement:length ratios. We see that for faults
from the Afar triangle, not only are displace-
ment:length ratios related to strain, but changes
in fault size distribution, displacement:length
ratios, fault density, and brittle strain are all inti-
mately related to one another.

GEOLOGIC SETTING
The triple junction between the Arabian,

Nubian, and Somalian plates is shown in Figure 1
(inset). Motion is accommodated by the East
African Rift, the Sheba Ridge, the Red Sea
Ridge, and faults in the Afar triangle. The three
major plate boundaries are in different stages of
evolution. Around the Sheba Ridge in the Gulf of
Aden clear magnetic anomalies are identified to
10 Ma, although spreading may have started ear-
lier (Cochran, 1981). The Red Sea began spread-
ing 4–5 Ma (Roeser, 1975; Searle and Ross,
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Figure 1. Location map
and extension vectors. In-
set shows extensional
triple junction. Arabian
plate is to north, Nubia is
to west, and Somalia is to
east. Area of larger image
is outlined in inset. Larger
image shows slopes cal-
culated from digital eleva-
tion model and average
extension vectors (thick
white lines) for 18.5 ×
18.5 km2 regions. Maxi-
mum average extension
for 342 km2 regions is
9.0%. Steep slopes appear
brighter. Linear features
are faults. Circular fea-
tures, such as those in
northwest, are volcanoes.
Fluvial channels are ap-
parent on eastern edge of
image. Transects mark lo-
cations of detailed fault-
population analyses.



1975), while the East African Rift remains a con-
tinental rift.

The extended crust in the Afar triangle is influ-
enced by all three plate boundaries as well as the
Danakil block. The Danakil block is thought to
have started as a piece of the Nubian plate and ro-
tated counterclockwise 23° to its current position
(Sichler, 1980; Collet et al., 2000). The relatively
undeformed Danakil block forms the northern
boundary of the Afar triangle. To the southwest
and southeast, the Ethiopian Plateau looms 2 km
above the floor of the Afar triangle. The plateau
consists of Tertiary basalt formed through the in-
fluence of the Afar mantle plume (e.g., Mohr,
1983; Hofmann et al., 1997).

The nature of the crust in the Afar triangle is
controversial (Makris and Ginsburg, 1987; Mohr,
1989). The crust is of intermediate thickness
(15–25 km), and shows a velocity structure tran-
sitional between continental and oceanic (Berck-
hemen et al., 1975). The strength of the crust,
measured as effective elastic thickness, decreases
from 17 to 5 km in highly extended portions of
Afar (Ebinger and Hayward, 1996). Much of the
Afar triangle is covered in Pliocene basalt of the
Stratoid series (Barberi and Varet, 1977). The
northwest-southeast–trending Asal rift (Fig. 1) on
the eastern edge of the Afar triangle is widely
cited as a location where the beginnings of
seafloor spreading can be observed on land (e.g.,
Stein et al., 1991). 

We studied in detail the extension and fault-
population characteristics across two transects.
Faults that cross transect A–A′ are thought to be
due to extension along the Arabia-Somalia plate
boundary (Manighetti et al., 1998). However, the
region just north of A′ belongs to the Danakil
block, not Arabia (e.g., Collet et al., 2000). In any
case, these faults are approximately perpendicular
to the Arabia-Somalia motion vector (e.g., Jestin
et al., 1994). The Asal rift (Fig. 1) is thought to ac-
commodate most of the predicted present-day
motion along this plate boundary (De Chabalier
and Avouac, 1994). Faults that cross transect B–B′
clearly belong to the northernmost portion of the
East African Rift, the boundary between the
Nubian plate to the west and the Somalian plate to
the east.

STRAIN REGIME TRANSITION
Regional Extension

We measured extension for the area shown in
Figure 1. Surface extension due to normal faults
was measured using a 3 arcsecond digital eleva-
tion model of the region that provides 92 m hori-
zontal and 10 m vertical resolution. Because the
region has been recently resurfaced by volcanics,
most of the high-frequency variability in the
topography can be attributed to normal faulting.
We calculated the vertical elevation difference
between adjacent pixels. When this difference
was not due to an obvious volcanic, fluvial, or
erosional construct, we assumed that the eleva-

tion difference was created by normal faulting.
Several weeks of field reconnaissance in the Asal
rift confirmed the predominance of normal fault-
ing. Observations of faults in the Asal rift indicate
that they typically dip steeply, ~70°. Because
faults may become steeper as they approach the
surface, we assumed a crustal average fault dip of
60° for our calculation. Given fault throw and
dip, we calculated the resulting heave or exten-
sion using simple trigonometry. Thus the exten-
sion estimates will vary with the cotangent of the
fault dip. By assuming fault dip rather than using
slopes calculated from the digital elevation
model, we also minimized underestimation of
fault dip due to undersampling or slumping.
Changes in topography due to minor strike-slip
motion, buried or eroded offset, deformation be-
low data resolution, and low-frequency topo-
graphic variation are neglected in this analysis.
Hence, the extension values presented in this
study can be viewed as minimum values. We do
not calculate the entire strain tensor.

Extension measured in the Afar triangle is
shown in Figure 1. The thick white lines indicate
the magnitude and direction of extension aver-
aged in 18.5 km by 18.5 km regions. The exten-
sion averaged in this size region ranged from
0.0% to 9.0%. The primary features are the
change in extension direction from northeast
across the Asal rift to east-southeast across the
East African Rift and the broad regions of strain
localization centered on those rifts.

Detailed fault-population analysis was con-
ducted along transects A–A′ and B–B′. Extension
averaged in smaller subregions along these tran-
sects (indicated by white rectangles in Fig. 1) is
shown in Figure 2. The zone of extension along
both transects is about 100–120 km wide. In tran-

sect A–A′ maximum extensional strain within
subregions is at about the 85 km point, just to the
northwest of the Asal rift. Here it is believed that
the beginning stages of slow seafloor spreading
can be observed on land (Stein et al., 1991; De
Chabalier and Avouac, 1994; Manighetti et al.,
1998). We measure total brittle extension across
transect A–A′ to be 8.5 km. In contrast, the ex-
tension across the East African Rift, transect
B–B′, is diffuse and there is not one well defined
extensional peak. The total extension across this
transect, where seafloor spreading is not yet im-
minent, is 3.4 km.

Fault Scaling
Displacement length profiles for normal faults

that are partially or fully contained within sub-
regions shown in Figure 1 were extracted from
the digital elevation model. Transects along the
hanging wall were subtracted from profiles along
the footwall to obtain displacement and length in-
formation. Fault density is calculated as fault
length per unit area (km/km2) (Fig. 3). We esti-
mate that fault lengths may be underestimated
by 0.4–4.0 km, depending on the displacement
gradients near tips. Lengths are underestimated
because we lose resolution below 10–15 m of
vertical offset. The error will be more significant
for small faults because the missing length will
represent a larger fraction of their total length. We
have added a constant value of 2 km to fault
lengths in Figure 4 to help account for the miss-
ing length (assuming that vertical offset below
12 m is not observed, and an observed displace-
ment gradient of 0.012 near the tips).

We found that the fault density and displace-
ment:length ratios change with the estimated brittle
strain. At first the fault density increases ap-
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Figure 2. Average extension for 6 × 12 km2 regions along A–A’ and B–B’ (indicated by white rec-
tangles in Fig. 1). Maximum average extension is 12.9% for 72 km2 subregions along A–A’ and
B–B’. Assuming 30% increase in fault density with uniform offset of 10 m, estimated error in ex-
tension plots within symbol size.



proximately linearly with strain, but at ~6%–8%
the density levels off and does not increase fur-
ther (Fig. 3A). Note that until about 8% exten-
sion, the displacement:length ratio remains rela-
tively constant around 0.012 (Fig. 3B). Beyond
8% strain displacement:length ratios rise sharply
from a mean value of 0.012 to 0.024. Brittle
strain, ε, is proportional to LWD, where the width
W is a constant width, L is fault length, and D is
displacement. In the low-strain regime strain ac-
cumulates with increasing fault density (total
fault length), whereas in the high-strain regime
strain accumulates because of increased dis-
placement on preexisting faults.

We also observe an evolution in the fault-
population statistics (Fig. 4). The faults in sub-
regions that accommodate <8% extension (filled
circles) exhibit close to a power law frequency
length distribution above the resolution cutoff at
4–5 km (Fig. 4A). In contrast, the fault size dis-
tribution in subregions that accommodate >8%
extension (squares) is closer to an exponential

(Fig. 4B). The maximum displacement distribu-
tion (not shown) exhibits the same basic relation-
ships as the fault length distribution. Faults in
low-extension subregions show power law scal-
ing and faults in high-extension subregions show
exponential scaling.

INTERPRETATION
Results show that brittle strain initially accu-

mulates as a result of steady increase in fault den-
sity, but that the rate of increase in fault density
with strain gradually diminishes until it reaches a
steady-state value at 6%–8% strain, beyond
which further strain is produced by increasing
displacement:length ratios. The fault size distri-
bution is power law in the low-strain regime but
becomes exponential at high strain. Higher strain
regions have relatively fewer small faults than re-
gions with lower strain. These observations are
the same as those observed by Spyropoulos et al.
(1999) in a clay model. They interpreted these
phenomena as resulting from an increase in fault

interaction, nucleation of new faults being inhib-
ited by stress shielding around preexisting faults
and older faults being annihilated by coalescence
(see also Ackermann and Schlische, 1997; Cowie,
1998). We have found, in addition, that high
strains are accommodated by a progressive in-
crease in the displacement:length ratio, which
implies that, statistically, displacement is accom-
modated on faults that are no longer growing in
length. This occurs because of pinning of fault
growth by stress interaction with other faults
(Gupta and Scholz, 2000; Contreras et al., 2000).

Poulimenos (2000) also observed higher dis-
placement:length ratios in normal faults that oc-
curred in higher strain settings in Greece. How-
ever, both high- and low-strain populations from
the western Corinth graben showed power law
frequency-length scaling. We favor Poulimenos’
second interpretation for these observations. The
faults in the higher strain region trend west-
northwest and are crosscut by a population of
smaller north-northeast–trending faults. These
smaller faults serve to pin the west-northwest–
trending fault population as stress fields do in
Afar, preventing tip growth. The frequency-length
distributions suggest that the west-northwest–
trending faults from Greece have not entered a
stage of growth dominated by coalescence.

CONCLUSIONS
We have observed fault populations in a single

rock type and tectonic setting in different stages
of evolution in the Afar triangle, a scenario previ-
ously only modeled. A strain regime transition
from power law to exponential frequency-size
scaling occurs when faults reach a certain density
(about 0.6 km of fault length per square kilometer
for the faults in Afar). Once this critical density is
reached, little new fault surface area is created.
Instead, faults must lengthen primarily by coales-
cence rather than by growth or nucleation. Satu-
ration of fault surface area appears to occur as
faults become pinned by the stress fields of
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Figure 3. A: Fault density (kilometers of fault length per unit area) as function of estimated strain.
Example error bar shows effect of 16 km of additional fault length with 10 m uniform offset. Ex-
tension estimate does not change significantly. B: Average displacement:length ratios for faults
that are entirely or partially contained within subregions along transects plotted against percent
extension. Example error bar shows uncertainty in displacement:length ratios and percent ex-
tension due to digital elevation model resolution. It is more likely that displacement:length ratios
are slightly overestimated than underestimated because maximum offsets are accurate to within
10 m, but fault length could be underestimated by 0.4–4 km.
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nearby faults. Their tips cannot easily propagate
into stress shadows around nearby faults; new
faults are also inhibited from nucleation by stress
shadows. Displacement:length ratios must in-
crease to balance stress shadows from nearby
faults against stress concentrations near tips. In
Afar, fault interaction plays a pivotal role in the
strain transition.
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