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Statistical Features of Seismicity

1. Introduction

Statistical studies of earthquake occurrences have frequently
been carried out since the early years of seismology. To obtain
reliable results from statistical analysis, a sufficient amount of
high-quality data is necessary. The data are taken usually from
earthquake catalogs, but many of the existing catalogs are
inhomogeneous and incomplete. When we use seismicity data,
special care must be taken to avoid or correct these defects in
the catalogs.

In most statistical studies, earthquakes are represented by
point events in a five-dimensional space-time—size continuum.
In ordinary earthquake catalogs, the five coordinates are
given as longitude and latitude of epicenter, focal depth, origin
time, and magnitude. There are many other quantities which
characterize an earthquake, fault-plane parameters (or more
generally moment tensor components), stress drop, fauli rupture
length, rupture velocity, ete. Statistical studies involving these
quantities are few. This is mainly because the complete data set
on these is unavailable especially for small or old earthquakes.

The results of a statistical analysis must be tested for sig-
nificance. Every method for a significance test is based on
certain assumptions. When we use a method, we must remember
the underlying assumptions.

Tt is often the case that we examine two or more data sets and
choose the one for which the statistical property in question is
most clearly recognized. The effect of such preferential selec-
tion of data set must be considered in the significance test. There
" is no common way of deciding how the significance level must
be changed to compensate this effect. Numerical simulation
may provide a soluticn in some cases.

2. Statistical Properties of
Earthquake Sequences

2.1 Identification and Classification of
Earthquake Sequences

Since the spatial and temporal clustering of earthquakes is the
most prominent feature of most earthquake catalogs, we will
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first consider the properties of earthquake clusters, such as
(foreshock—ymainshock-afiershock sequences and earthquake
SWarms.

There is no universally accepted exact definition of after-
shocks, foreshocks, and earthquake swarms. We must give
a working definition when we perform a statistical analysis on
them. Figure la—d shows plots of occurrence rate versus time
for typical earthquake sequences. The successive occurrence
of mainshock—aftershock sequences of similar size (Fig. 1d) is
also called an earthquake swarm, but it is apparently different
from an ordinary swarm (Fig. 1c).

In statistical studies of seisimicity, we sometimes use
declustered catalogs, which contain only independent events
{mainshocks and isolated earthquakes; the largest shock in
a swarm is considered as the mainshock). Most algorithms for
declustering (i.e., identification of earthquake sequences) use
either space—time windows to include clustered events or
space-time separations to link clustered events. For declus-
tering or cluster identification algorithms, see Ddavis and
Frohlich (1991a), Molchan and Dmitrieva (1992), and refer-
ences in these papers. Studies using declustered catalogs or
lists of earthquake clusters obtained by declustering are found
in Utsu (1972a), Prozorov and Dziewonski (1982), Reasenberg
(1985), Prozorov (1986), Keilis-Borok and Kossobokov
(1990), Frohlich and Davis (1990), Davis and Frohlich
(1991a,b), Ogala et al. (1995), and many others.

2.2 Aftershocks
2.2.1 Temporal Distribution of Aftershocks

Omori (1894) showed that the frequency of felt aftershocks per
day, n(t), following the 1891 Nobi, central Japan, earthquake
(M =8.0) decreased regularly with time according to the
equation

n(t) = K(t+ ¢} " {n

where K and ¢ are constants and ¢ is the time measured from
the mainshock. The cumulative number of aftershocks, N(t),
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FIGURE 1 Examples of earthquake sequences. Temporal variations in the occurrence frequency per
three hours are shown. (a) Mainshock—aftershock sequence; (b foreshock—mainshock-aftershock
sequence; (c) earthquake swarm; (d) successive occurrence of mainshock—aftershock sequences

{earthquake swarm of the second kind).

plotted against log?, tends to a straight line with time, because

N = forn(s) ds = KIn(t/c + 1) (2)

Utsu (1961) plotted the data of N(z) for 44 aftershock sequences
against log ¢, and showed that the slope of cumulative curve
tends to decrease with time for most sequences. He reached the
conclusion that Eq. (3) fits the data more closely and called it
the modified Omori formula

ry =K(t+o) " (3)

where p is a constant somewhat larger than 1.0 (mostly 1.0-
1.5). N(#) for Eq. (3) is given by

NG =K - g+ 7Y (-1 (pED @)

If the origin times ¢ (i=1,2,...) are available for all
aftershocks of M > M, occurring in a certain period of time,
we can compute the maximum likelihood estimates of K, p,
and ¢ (Ogata, 1983a). If the data contain the background
seismicity of the region, it is recommended (o use the equation
n() =K(t+¢) 7 +B and estimate the background level B at
the same time.
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Computer programs for obtaining the maximum likelihood
estimates of K, p, ¢, and B values and their standard errors for
a given set of data are available in JASPE! Software Library
Vol. 6 (Utsuand Ogata, 1997). This package contains the programs
for the double sequence (the second sequence starts at r=14)

alt) =K+ c) ™ + Kt + 1+ )™ )
{K; =0fort < ty)
and the triple sequence as well as some other formulas
including the Weibull distribution

a(t) = Kaft? ' exp(—at?) (6)

The stretched exponential function used by Kisslinger (1993)
is the same as Eq. (6). Gross and Kisslinger (1994) tried more
general equations.

The K value in the modified Omori relation depends
strongly on the threshold magnitude M,. The p value seems to
be almost independent of M, (e.g., Utsu, 1962). This is con-
sistent with the stability of mean magnitude M (or b value)
during an aftershock sequence (e.g., Lomnitz, 1966), The ¢
value often shows strong dependence on M,. This is mainly
due to the deficiency of data. Small aftershocks occurring
shortly after the mainshock tend to be missing due to over-
lapping of seismograms, One recent example supporting the
modified Omori relation and the independence of p on M, is
shown in Figure 2 [see also Utsu er al. (1995) and Ogata
{1999h)]. Nyffenegger and Frohlich (1998) investigated the
factors that influence the maximum likelihood estimate of p
value. Wiemer and Katsumata (1999) showed spatial variation
of p and b values in the aftershock zones of four earthquakes
(see also Utsu, 1962). Kisslinger (1996) presented a compre-
hensive review on aftershock phenomena.

- 2.2.2 Spatial Distribution of Aftershocks

It had been known before the introduction of earthquake
magnitude that the aftershock epicenters scatter more widely
for larger mainshocks. Utsu and Seki (1955) introduced the
earthquake magnitude in this problem and obtained a relation
log S = 1.02M, — 4.01, where S is the aftershock area in km?
for a mainshock of magnitude M, from the data of 40 main-
shock—afiershock sequences in Japan (6<M,, <8.5). This
equation can be written in a simpler form

log§ =My, — 3.9 (7)

If we consider a rectangular aftershock area with length £ and
width W and simply assume that W=L/2, Eq. (8) can be
transformed to an eguation proposed by Utsu (1961, 1969)

logL = 0.5 My — 1.8 (8)

Although an aftershock zone roughly corresponds to the fault
ruptured during the mainshock, precise studies indicate that
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FIGURE 2 Modified Omori curves (top: rate, bottom: cumulative
number) fitted to the aftershock sequences of the Hyogoken-Nanbu
(Kobe) carthquake of 16 January 1995 (M, 6.9). Data are taken from
the Japan Meteorological Agency catalog. All earthquakes occurring
in the rectangular area shown in the inserted map with focal depth
less than 40km are designated as aftershocks. The data and curves
corresponding to the four (or two) different threshold magnitudes are
shown. Note the independence of p value on the threshold magnitude.

aftershocks are concentrated near the margin of the fault area
where the large displacement occurred {e.g., Hartzell and
Heaton, 1986; Mendoza and Hartzell, 1988; Takeo, 1988). The
relationi between surface rupture length and M, may have
different coefficients (e.g., Tocher, 1958; lida, 1965; Matsuda,
1975; Wells and Coppersmith, 1994), because the surface
rupture does not always represent the entire fault rupture
responsible for the earthquake.

There are many studies, which relate the size of aftershock
zone to the mainshock magnitude. For example, Acharya
(1979) obtained similar equations to Eq. (7} for five regions in
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the Circum-Pacific zone, but the coefficient of M,, scatters
from 0.78 to 1.22. Iio (1986) obtained

logl = 043M, — 1.7 (9)

for smaller earthquakes in Japan (3.8 < My, < 6.2).

The aftershock zones sometimes show considerable
expansion within days to years from the mainshock. For
related studies, see Mogi (1968a) and Tajima and Kanamori
(1985).

2.2.3 Aftershock Activity

The degree of aftershock activity relative to the mainshock size
may be expressed by > | Ei/En, where En and E; denote the
energy (or moment) of the mainshock and the ith largest
aftershock, respectively. Since the energy (or moment) of the
largest aftershock, Ej, is roughly proportional to the total
energy (or moment), the aftershock activity is roughly repre-
sented by E/Em, which corresponds to the magnitude differ-
ence between the mainshock and the largest aftershock

D =M, — M (10)
D, values for many mainshock—aftershock sequences have
been investigated for its regional variation and dependence on
M,,. Although D; = 1.2 is known as Bath's law (Richter, 1958),
Dy actually varies very widely from 0 to 3 or more.

The relation between D; and M, has been stadied by Utsu
{1961) and several other workers. Utsu (1969) expressed Dy
(median of D for mainshock magnitude M} as Dy =5.0-
0.5M,, for 8.0>M,>60 and Dy =2.0 for M, <6.0 for
shallow earthquakes in Japan. Most other workers gave
a smaller average D, value for M less than about 6.5. For
example, average D, for M, =6.01s 0.67, 1.08, 1.14, and 1.05
according to Papazachos et al. {(1967), Papazachos (1971),
Bath (1977), and Kisslinger and Jones (1991), respectively.
The difference between Utsu and most other workers may be
caused by the difference in data-acquisition principle. Utsu
considered the existence of earthquakes whose aftershocks
* were too small to be observed. Studies of regional variation of
D, are found in Mogi (1967), Utsu (1969), Tsapanos (1990),
Doser (1990}, etc.

The aftershock activity has also been discussed by using the
number of aftershocks above a certain magnitude level. For
example, Singh and Sudrez (1988) expressed the average
number N of aftershocks of my,>5 accompanying large
thrust earthquakes of moment magnitude M, along the
Circum-Pacific subduction zones. The relation is given by
logN=M, —6.34. Some systematic deviations from the
average seem to depend on the degree of interplate coupling
and complexities of the source. See Papazachos (1]f'97l),
Lamoreaux ef al. (1983), Yamanaka and Shimazaki (1990},
and Davis and Frohlich (1991a) for regional trends. |

Utsu

Deep earthquakes are accompanied by few aftershocks (e.g.,
Wadati, 1931; Frohlich, 1987). Examples of aftershocks of
deep earthquakes and depth variation of aftershock activity
have been reported by Solov’ev and Solov’eva (1962),
Prozorov and Dziewonski (1982), Pavlis and Hamburger
(1991}, Wiens ef al, (1997), among others.

2.3 Foreshocks

Foreshocks are generally infrequent as compared with after-
shocks. Foreshock activities are highly variable. Many large
earthquakes of M >7.0 are not preceded by foreshocks, even
if the seismograph network is capable of detecting shocks of
M < 3.0. Therefore the magnitude difference between the
mainshock and the largest foreshock must be larger than 4 in
these cases.

Temporal distributions of foreshocks are also quite variable.
Foreshock sequences may show any pattemn shown in Figure 1.
Mogi (1985) classified the foreshock sequences into two types,
C and D. In type C sequences, the activity increases gradually
toward the mainshock. In type D sequences, the mainshock
oceurs after the foreshock activity dies down. Although no
detailed statistics are available, type D seems 1o form a
majority of foreshock sequences.

1t is striking that, if we superpose the data of foreshock-
mainshock time separations from many foreshock sequences,
we obtain the power-law type distribution {7 similar to the
aftershock temporal pattern with the time direction reversed
(Papazachos, 1974; Jones and Molnar, 1976, 1979; Davis and
Frohlich, 1991b; Utsu, 1992; Ogata et al., 1995; Maeda,
1999). Nevertheless, the great majority of individual foreshock
sequences do not fit the power-law distribution. Only a limited
number of foreshock sequences or precursory seismic activ-
ities show a regular increase of activity (power-law or expo-
nential growth) toward the mainshock (e.g., Varnes, 1989,
Jaumé and Sykes, 1999; Yamaoka et al., 1999).

The discrimination of foreshock sequences from earthquake
swarms is a difficult problem, because no easily recognizable
differences in statistical or physical properties are found
between them. For further discussion on this issue and
other characteristics of foreshocks, including the relation to
tectonics and fault types, see Mogi (1963), Jones and Molnar
(1979), von Seggern et al. (1981), Jones (1984), Ogata
et al. (1995, 1996), Abercrombic and Mori (1996), and
Reasenberg (1999).

2.4 Earthguake Swarms

An earthquake swarm is a cluster of earthquakes in which there
is no predominantly large single earthquake. Swarms are
roughly divided into two types. The first type is the ordinary
swarm in which the activity changes more or less irregulatly
(Fig. 1c) lasting a few hours to more than one year. Most
swarms occurring in volcanic areas show this pattern, reflecting
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the magmatic activity at depths. The second type is the
successive occurrence of mainshock—aftershock sequences of
similar size (Fig. 1d), which lasts several days to months.

3. Size Distribution of Earthquakes

3.4 Gutenberg-Richter Relation and
its Equivalents

3.1.1 Power-Law Distribution

In general, smaller earthquakes are much more frequent than
farger ones. Statistical studies of this property in late 19th
century were not so successful becaunse of the lack of adequate
scale to measure the earthquake size. For historical review, see
Utsu (1999), where the pioneering work of Wadati (1932) has
been introduced. He adopted a power-law distribution for
earthquake energy F

n{EY o ETV (11}

and estimated the value for exponent w as 1.7-2.1 or smaller by
an indirect method. If the magnitude M is related to energy E
(erg) by the equation of Gutenberg and Richter (1956)

logE=15M+11.8 (12)

Equation (11) is equivalent to the famous equation by
Gutenberg and Richter (1944, 1949)

logn(M) =a— bM (13)
or
logN(M) = A — bM,  N(M) = / “dam (18)
M

and w =1+ 2b/3. Numerous studies indicated that Gutenberg
and Richter’s relation (hereafter called the G-R relation) is
approximately valid in most cases and the value of b falls in the
range 0.6-1.1. This corresponds to a w value of 1.40-1.73.

Ishimoto and lida (1939) showed that the maximum
amplitude A recorded at a seismograph station has a power-
law distribution with exponent m=1.74,

n(A) c A7 (15}

This is equivalent to the G-R relation with h=m — 1 (Asada
et al., 1951), if magnitude is defined by M=logA+
F{A), where f{A) is the calibrating function for epicentral
distance A and the & value does not vary regionally. Most
m values reported hitherto fall between 1.6 and 2.1.

Since the development of the concept of fractals, many
phenomena exhibiting a power-law distribution have been
treated as fractals. The G-R relation has often been interpreted
in terms of the power-law (fractal) statistics of faults, cracks,
and fragments (e.g., Takeuchi and Mizutani, 1968). Aki (1981)
related the b value and the fractal dimension D as D=25.
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In these interpretations, it is implicitly assumed that each fault
(or crack, or fragment) corresponds to one earthquake, i.e., the
probability of earthquake occurrence is independent of the
fault size. This assumption does not seem so natural.

3.1.2 Estimation of b Value

Under the assumption that the magnitude data are random
samples from a population obeying the G-R relation, the
method of moments (Uisu, 1965) and the method of maximum
likelihood (Aki, 1965) both yield the solution

b=loge/(M —M,) (16)

where M is the mean magnitude of earthquakes of M > M, and
loge =0.434294, M, is the threshold magnitude above which
the data should be complete. The standard error of the max-
imum likelihood estimate of b is approximately b /\/N for large
N (the number of earthquakes of M > M,). The smallness of
error does not necessarily indicate the goodness of fit of the G-R
relation to the data.

Since Eq. (16) is obtained for continucus exponential dis-
tribution, care must be taken when we use discrete (rounded)
magnitude values. If the magnitudes are given at intervals of
0.1 as in most catalogs, and if we use the data with M > 4.0 for
example, we must put M, =3.95 in Eq. (16), because M =4.0
means 4.05 > M > 3,95, If we use M, =4.0 in this case, the
error in b value may easily reach several percent. There is
another kind of error due to rounding (e.g., Tinti and Mulargia,
1987; Vere-Jones, 1989). This error is not large (usually
less than 1%) if the magnitudes are given to the nearest 0.1
magnitude unit or less.

34.3 Temporal and Spatial Variation of b Value

Numerous papers have been published dealing with the spatial
and temporal variation (or stability) of b value (e.g., Utsu,
1971; Li er al., 1983; Imoto, 1987; Jin and Aki, 1989; Ogata
and Katsura, 1993). For example, temporal changes in &
value for background seismicity prior to large earthquakes
have occasionally been reported (e.g., Smith, 1986, 1998;
Trifu and Radulian, 1991; Imoto, 1991). Smaller b values
for foreshocks than those for aftershocks and background
seismicity have also been reported (e.g., Suyehiro ez al., 1964;
Berg, 1968; Wu ef ai., 1976; Molchan and Dimitrieva, 1990;
Molchan et al., 1999). However, we notice that many foreshock
sequences have normal b values, and some earthquake
swarms with small » values are not followed by future large
earthquakes.

Spatial variations of b value have been studied for various
regions of the world and for various focal depth ranges (Ogata
et al., 1991; Frohlich and Davis, 1993; Okal and Kirby, 1995;
Wiemer and Wyss, 1997; Molchan ef al., 1997; Wiemer ef al.,
1998, and many others). However, universally recognizable
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regularities are relatively few. Some authors have argued
against the regional variation of size distribution {e.g., Kagan,
1997, 1999).

To test the significance of the difference in b values between
two earthquake groups, a method based on the F-distribution
has been used (Utsu, 1966). A method using Akaike Informa-
tion Criterion (AIC) (see Chapter 82 by Vere-Jones and Ogata)
is simpler (Utsu, 1992, 1999). Of course these tests assume the
G-R relation. If this assumption is not valid, it is possible that
the two groups have nearly equal b values calculaied from
Eq. (16) but the size distributions are quite different.

3.2 Modified Equations

Although the G-R relation fits the data fairly well in many
cases, significant deviation from it has often reported. The
log n(M) (or log N(M)) versus M plois for some data sets show
considerable curvature, though the G-R relation predicts
a straight line with slope of —b.

Various modifications of the G-R relation have been pro-
posed to represent such curved distributions (see a review by
Utsu, 1999). The simplest one is the truncated G-R relatiomn,
ie., lognM)=a—bM for M <My and nM)=0 for
M > M. The maximum likelihood estimate of b in this case
is somewhat different from that calculated from Eq. (16) (e.g-,
Page, 1968). If the truncated G-R relation is valid, the regional
variation in b value calculated from Eq. (16) may be caused by
the regional difference in Mo, rather than the b slope in the
range below My

The power-law distribution of energy or moment tapered by
an exponential function used by Kagan (1991a, 1993, 1997)
has the form (Gamma distribution)

n(E) = CE " exp(—E/Emax) (17)
This is equivalent to
log (M) = a — bM — k10" (18)

where b=1.5(w—1)and k= 107 1PMma |og ¢ (M qx 15 the mag-
nitude corresponding to Epgy)- This is a generalized form of an
equation for a branching model (Otsuka, 1972) derived by Saito
et al. (1973), Vere-Jones (1976). and Maruyama (1978), in which
b takes a value of 0.75.

Another modification is the power-law distribution tapered
by a logarithmic function
n{E) = CE™" In(Emax /E). (n(E) =0 for £ > Emax) (19)
which is equivalent to the equation proposed by Utsu (1971)

log n(M) = a — bM + log(Mmax — M) (20)

It is possible to obtain the maximum likelihood estimates
of the parameters of Eqs. (17)—(20) and some other equations
including those proposed by Lominitz-Adler and Lomnitz
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FIGURE 3 Frequency—magnitude distribuiion for earthquakes in
the world for the years 1977-1997. The magnitude used is the
morment magnitude (M} converted from seismic moments given in
the Harvard University CMT catalog. Open and solid circles denote
the frequency per 0.1 magnitude unit and cumulative frequency,
respectively. Curves for Egs. (18) and (20) fitted to the data are
shown.

(1979), Makjani¢ (1980), Anderson and Luco (1983), and
Seino ef al. (1989) together with the AIC values for a given set
of magnitude data. Computer programs dare available in
JASPEI Software Library Vol. 6 (Utsu and Ogata, 1997). We
can compare AIC values for different equations and find the
best fitting equation. For model selection criteria using AIC,
see Chapter 82 by Vere-Jones and Ogata. Utsu (1999) provides
actual examples.

Figure 3 shows the distribution of M., for recent earthquakes
in the world. The curves represent Eqs. (18) and (20) fitted to
the data. If the complete data in the 1950s and 1960s were
available, the distribution would be closer to the G-R relation
(straight line), since several great earthquakes of M, = 8.7-9.5
occurred during 1952-1965 (Kanamori, 1977).

4. Temporal Distribution of
;érthquakes

d
4.1 Stationary Poisson Process

The simplest reference model for the distribution of earth-
guakes in time is the stationary Poisson process, in which all
events occur independently and uniformly in time. This process



