Dislocation Models of Strike-Slip Faults

In this chapter, we will begin by considering a simple two-dimensional model of a very long
strike-slip fault (figure 2.1). We consider a homogeneous, linear elastic half-space. The fault is
taken to be infinitely long in the x; direction, and the deformation is antiplane strain. This
means that the only nonzero displacement is parallel to the fault in the x3 direction, and
it varies only in the plane perpendicular to the fault. That is, u; varies only with x; and x;,
u(x) = us(x, x2)83. As a starting point, we will consider the slip to be uniform with depth
along the fault. Later, we will conmde; the more realistic situation in which the slip varies with
depth.

2.1 Full-Space Solution

‘We will begin by ignoring the earth’s surface and con51denng a fault in a full-space. The
solution for a half-space is then rather easily constructed. Notice from figure 2.1 that the
displacement field is discontinuous across the fault surface; the Xz, X3 plane. A surface of
imposed displacement discontinuity is known as a dislocation. In the antiplane geometry, the
displacement traces a helical motion around the dislocation (figure 2.2), which is therefore
known as a screw dislocation. The line parallel to the x; direction where the displacement jumps
discontinuously from zero to some value 5 is the dislocation line. The half-plane of the fault,
x =0, x > 0, is the dislocation surface.

Theboundary condition at the dislocation is that the displacement discontinuity across the
dislocation surface is equal to the fault slip, s. Adopting a radial coordinate system centered on
the dislocation line (the x3 axis),

u3(9 =23’1’)—U3(9 :O) =38. . (2.1)

Figure 2.1. Infinitely long strike-slip fault. The fault lies in the plane normal to x;, with slip in the x3
direction. The earth’s surface is the plane xz = 0. In this illustration, slip tapers with depth. This chapter
begins with the case in which slip is uniform with depth.
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Figure 2.2. Screw dislocation, with dislocation line along x;. The slip vector s shows the displacement
of the back surface with respect to the front; the indicated slip is left-lateral.

In antiplane strain, there are only two nonzero strains, which from equations (1.4) are

_ 1 dus
13 = 2 X1 ’
1 31!3
= ——. 2.2
= 5 (2.2)

Hooke’s law for a homogeneous, isotropic elastic material (1.103) is

gij = ZI.LEjj + }\.Ekklsfj. (23)

In the antiplane case, there are only two nonzero stresses, corresponding to the shear strains
(2.2):

Ay
o3 = s
13 14 %
‘ o
= p— 2.4
o = g (2.4)

The stresses must satisfy the equilibrium equations (1.97). Neglecting inertial terms—that
is, equivalent to assuming that the displacements develop slowly compared to elastic wave
speeds—and body forces f;, including gravity, we have

36,'.,' .
— =0. : 2.5
3Xj ( )

While in general there are three equilibrium equations, in the antiplane case, two are solved
automatically, and there is only one nontrivial equation:

dos1 | Bom _ g (2.6)

L axy dxp
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Substituting the stresses (2.4) into the equilibrium equation (2.6) yields

uy  Pu 3
——t—=| ¥V , %) =0. : 2.7
ax? ax2 uz(x1, x2) 2.7)

The displacement field satisfies Laplace’s equation. This Is a general result for antiplane
elasticity problems. Note that since the solution is written in terms of the displacement, it
is not necessary to introduce the compatibility equations.

From figure 2.2, we notice that the displacement increases smoothly with 8 except at the
dislocation surface. Thus, one might guess a solution of the form

S8

Uz = iﬂ' (2.8)
Note from equation (2.8) that u; increments by +s, as 6 varies from 0 to Zr. In the following,
we will adopt the —s solution, making the sense of slip opposite to that shown in figure 2.2.
Changing the sign of s simply reverses the sense of slip. For equation (2.8) to be a valid solution,
it must match the boundary conditions and satisfy the equilibrium equations. Equation (2.8)
was in fact constructed to satisfy the boundary condition (2.1). To see whether it also satisfies
thie equilibrium equations, write Laplace’s equation in polar coordinates:

32]'.{3 1 ouy 1 37‘1!3
Vi — - 2.9
TE e T e gen 29)
In this form, it is clear that V2u; = 0. Thus, equation (2.8) satisfies the governing equation and
the slip boundary condition on the fault surface. If we had not recalled the Laplacian in polar
coordinates, we could also check that equation (2.8) satisfies equation (2.7} by converting the
displacements to Cartesian coordinates:

N (ﬁ) . (2.10)

The relevant partial derivatives are

dus s Xa

Pl e a2
s m

= o 211
Xy 2w XF 4 x5 (2.10)

A further differentiation of equation (2.11) verifies that the equilibrium equations are indeed
satisfied. '

Solution (2.8) satisfies equilibrium and the boundary conditions on the dislocation surface.
What about the stress far from the dislocation—that is, asr — oo? The stresses can be found
from equations (2.4) and (2.11):

Otz YT ) siosin @
— Nl d =2 , 2.12
M=l T 2 x2+x2 2% r (212)
du -5 X —Su cos 6
op=pad M R TIREOST (2.13)

ax, 2 ¥4+x2 7 2n or
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Figure 2.3. Dislocation dipole. A pair of bppositeiy signed dislocations are located at x; = —d and

X3 = -+d, causing uniform slip in the enclosed interval.

Notice that the stresses decay as 1/r from the dislocation line, not the dislocation surface. It is
the dislocation line that is the source of strain, not the dislocation surface.

Wewill next consider slip extending over a finite interval in the x, direction. This solution is
easily obtained summing the solutions for two oppositely signed dislocations. The governing
differential equation (2.7) is linear. Thus, if two displacement fields u¥ and ¢ independently
solve equation (2.7)—that is, V24 = 0 and v?*u® = 0--their sum also satisfies the equation
V2 + 4™y = 0. This is known as the principle of superposition. In particular, add a screw

dislocation at depth x; = —d and an oppositely signed screw dislocation at depth x, = +d
(figure 2.3). A dislocation at x, = d is obtained by replacing x, with x; — d in equation (2.10).
This leads to
-8 - A1 1 X1
= P S I —— . 2.14
Uy = o [tan (x2+d) tan (xzﬁd)} (2.14)
The stress due to slip over the finite interval is thus
—Su X +d  xp—d )
=— - —— 2.15
U13 2 ( T% rg ’ - . ( )

where the distance from the lower dislocation is r = x¥ + (xz + d)?, and the distance from the
upper dislocation is 73 = x2 + (x, — d)*. On the plane of the fault, x; = 0, this becomes

spd sud .
73— d2)  wln—dig+d)

ol =0)= (2.16)

(see figure 2.4). Note that equation (2.16) gives the change in stress due to slip on the fault. The
total stress is the sum of any preexisting stresses and the changes due to fault slip. As expected,
the stress change is negative inside the slipping zone and positive outside this region. We
interpret the negative stress as a decrease relative to some initial state and the positive stresses
as a stress increase. Physically, it makes sense for fault slip to relax the stress. Because the
slip changes discontinuously from s to 0, the strains, and thus stresses, are infinite at the
dislocation line. Note from equations (2.12) and (2.13) that the dislocation stresses havea 1/r
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Figure 2.3. Dislocation dipole. A pair of loppositely signed dislocations are located at x2 = —d and

Xz = +d, causing uniform slip in the enclosed interval.

Notice that the stresses decay as 1/r from the dislocation line, not the dislocation surface. It is
the dislocation line that is the source of strain, not the dislocation surface..

We will next consider slip extending over a finite interval in the x, direction. This solution is
easily obtained summing the solutions for two oppositely signed dislocations. The governing
differential equation (2.7) is linear. Thus, if two displacement fields #'V and u*? independently
solve equation (2.7)—that is, V2u? = 0 and V2u® = 0—their sum also satisfies the equation
V2(u® 4 u®) = 0. This is known as the principle of superposition. In particular, add a screw
dislocation at depth x, = —d and an oppositely signed screw dislocation at depth x; = +d
(figure 2.3). A dislocation at x; = d is obtained by replacing X, with x, — d in equation (2.10).

-5 -1 X B 21 X4
[tan (_xz+d) tan (x—-—uz_d)} .

This leads to

"7

The stress due to slip over the finite interval is thus

oialx =0)=

(see figure 2.4). Note that equation (2.16) gives the change in stress due to slip on the fault. The
total stress is the sum of any preexisting stresses and the changes due to fault slip. As expected,
the stress change is negative inside the slipping zone and positive outside this region. We
interpret the negative stress as a decrease relative to some initial state and the positive stresses
as a stress increase. Physically, it makes sense for fault skip to relax the stress. Because the
slip changes discontinuously from s to 0, the strains, and thus stresses, are infinite at the
dislocation line. Note from equations (2.12) and (2.13) that the dislocation stresses haveal/r

a3 = —ls,u,
B 2w i"l2

where the distance from the lower dislocation is#
upper dislocation is 1§ = x? + (x — @)*. On the plane of the fault, 2, =0, this becomes

sud

2 _
=

Xz‘-i-d_Xz—d

X2 + (%2 + d)*, and the distance from the

(2.14)

(2.15)

(2.16)

70 —dD) (- dx+d)
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Figure 2.4. Stress change duetoa pair of dislocations at x; = -1 and x = +1.

singularity. For a finite fault represented by a pair of dislocations, the stress is singular both
inside and outside the fault, as seen in figure 2.4 and equation (2.16), where xz — dandx +d

measure the distance from each end of the fault.

For a pair of dislocations (a dipole), representing slip over a finite interval in x,, the far-field
stress decays more rapidly with distance than it does for a single dislocation. To see this, first
note that from equation (2.13), the stress resulting from a dislocation at x; = —dis

Sk X+d '

For slip due to a pair of oppositely signed dislocations, one atdand a second at slightly greater
depth d + Ad, the stress is thus

03=#S—,LL ]: X2+d+Ad _ X2+d ] (218)
! 2r [ x2 + (xp +d -+ Ad)? x%+(xz+d)2' T

Noticing that in the limit as Ad — 0, thisis the formal definition of a differential, we can write

the stress as
S Ad @ |: X2 + d :I

OB =TT ad X + (% + d)?
M, cos(2a) .
= _ ! 19
2 r? 2.19)
where M, is the seismic moment (see chapter 3) per unit length of fault; My = wusAd,

the product of the shear modulus, the slip, and the fault area per unit length in the x;

Di
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Figure 2.5. Dislocation at x2 = —.d, and image dislocation at xa = d.

direction; and « is the angle between the x; axis and the vector pointing from the center of
the dislocation dipole to the observation point, as in figure 2.3. In summary, the dislocation
stresses decay proportional to 1/r in two dimensions, and the stresses due to a dislocation
dipole, in two dimensions, as 1/7% aslongasr > Ad. '

2.2 Half-Space Solution

To a reasonable approximation, no stress is transmitted between the solid earth and the
atmosphere. We will thus model the earth’s surface as one across which the shear and normal
tractions vanish. Furthermore, if ail of the relevant length scales in the problem are small
compared with the earth’s radius, we are able to ignore earth curvature and model the free
surface as planar, Here, the free surface is taken to be x; = 0, so the governing equations
must be satisfied for all x, < 0. For antiplane strain problems, the half-space solution is easily
constructed using the method of images. '

What are the stresses acting on the surface x; = O duetoa dislocation in a full-space at
x5 = —d? The only nonzero stress acting on the surface is o33, and from equation (2.12),

Si X1

= ——— 2.20

9= on X3 4 (g + d)? 2.20)

. s -

o300 =0) = E%XT—&E (2.21)
1

Clearly, a single dislocation iiseif does not satisfy the free-surface boundary condition. The
remedy is to add a (fictitious) image dislocation at x, = d with opposite sign, equidistant
from the putative free surface (figure 2.5). We must ensure that the image dislocation surface
is restricted to the region x; > 0 so that it does not generate discontinuities within the earth
(x, < 0). Note that in figure 2.5, the actual dislocation points along the negative X; axis. In
section 2.5, you will see that changing the direction of the dislocation surface 180 degrees
reverses the sense of slip, so that by comparing to figure 2.2, it is in fact the —s solution that is
shown in figure 2.5.
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The o323 stress due to the dislocation and its image is

S X X1
il — 2,22
= [xf + (i +dP (- d)z} @22
so the stress on the surface x, = 01is
S b4 X1
: O’zg(Xz = O) = E (m - m) == (. (223)

By summing the contribution from the dislocation and its image, the free-surface boundary
condition is now satisfied. The displacements due to the dislocation and its image are given by

. ;S -1 X1 _ ] X1 )
Uz = 7 [tan (x2+d) tan (“xz—d)} . (2.24)

We can now construct a solution for slip over a finite interval in a half-space by summing the
contributions from two dislocations and their respective images. In particular, assume that slip
is uniform from depth &, to depth d,, wheze |di| > |d;|. Using the principle of superposition,

X1
tan—1
)+ an (x2_d2)

~
deep dislocation deep Image shallow dislocation shallow image

s = — |tan? al — tan~! 1 —tan! 1
3 2 Xo 4 e X2 — : X3+ dy

(2.25)

Displacements on the free surface are of particular interest, since this is where data is collected:

us(x; = 0) = -;—S [tan"* (2—) —tan! (;—;)] ) (2.26)

I the next sections, we will consider two limiting cases of this result.

2.2.1 Coseismic Faulting
Let the shallow dislocation come to the surface—that is, & — 0. This describes uniform slip
from the surface to depth d (figure 2.6). First note that

- S R
gzl_n»% tan (dz) =3 sgnix;), (2.27)
_so that
C -5 i fx T
Us(x, =0) = W; [tan f (é) — "2— Sgn(xl)] . (228)
Now notice that

tan™! (;—1) +tan~! (j—l) = % 58T(x1), (2.29)
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in and out of the page but are plotted to simulate a three-dimensional perspective.

so that

Uz (% =0) = % tan~t (ﬁ) (2.30)

X1

which holds for all values of x; (figure 2.7). We can now compute the shear strain, ex-
cept at the fault trace (x; = 0), where the displacements are discontinuous and therefore
nondifferentiable:

Clous - 1
_ZBxl_Z:rrdl X1 2
1+ ()

€13 (231)

d

Note that the coseismic strain, or strain change in large strike-slip earthquakes (equation
[2.31]), is everywhere negative. That is because earthquakes release shear strain, as expected.
The maximum strain, which occurs at the fault trace, is -s/2xd,. Note that the displacement
at the fault trace is discontinuous, so the strain there must be defined at x; = +4 in the limit as
4 tends to zero. The strain change decays with distance from the fautt such that the magnitude
of the strain is half the maximum when x; = d; (figure 2.7),

2.2.2 Interseismic Deformation

Now let the deep dislocation go to infinity, &, — oo. In this case, the fault is locked from
the surface to depth d, but slips by a constant amount below that depth {(figure 2.8).
This was proposed by Savage and Burford (1970) as a first-order model of interseismic
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Figure 2.9. Interseismic displacement and strain.
the San Andreas Differentiating equation (2.32) with respect to time yields the surface velocity v;. If the
geometry is time-invariant—thatis, if the depth &, does not change with time,
(2.32)
§ X
v3(x = ) = = tan™! (—1) (2.33)
T dg
LE—
where § = ds/dt is the fault slip rate. Note from equation (2.33) and figure 2.9 that the velocity
—r—] far from the fault is equal to half the fault slip rate.
5,' ; - Differentiating equation (2.33} with respect to the spatial coordinate perpendicular to the
9’ ; fault yields the shear strain rate at the free surface;
AN
A
Z 7
A A , 1 3u § 1
€ = —— = . 2.34
; ;_ B 2 3x; 2ds X1 z ¢ )
7”7 14 _)
iy : dy
27
; f;- Notice that the shear strain rate is everywhere positive; thus, shear strain accurnulates on the
-5-—5— fault between earthquakes. In fact, the interseismic strain (2.34) is exactly equal in magnitude
and opposite in sign to the coseismic strain (2.31) if the cumulative deep slip integrated over
] the time between earthquakes is equal to the coseismic slip (figure 2.10). Thus, after a complete
3 earthquake cycle, there is no strain in the intervening blocks, simply rigid block translation of
the two sides of the fault. )
It is important to note that, as mentioned earlier, the deformation is caused by the dislo-
1ts are directed in cation line and not by the dislocation surface. The implication of this is that the deformation
field at the surface is independent of the dip of the fault, if the slip on the fault is spatially
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Figure 2.10. Interseismic displacement plus coseismic displacement equals the long-term fault motion.

®|© ?

?

Figure 2.11. The surface displacements and strain are independent of the dip of the dislocation surface
for a single screw dislocation. :

uniform and extends to infinite depth, as long as the fault does not breach the surface. In
particular, the deformation at the surface is the same whether the fault plane is vertical (aswe

" have modeled it) or horizontal. A horizontal dislocation might represent a zone of decoupling. : ]
Our results show, unfortunately, that we cannot distinguish between these models on the basis : T
of surface displacement ot strain for infinitely long strike-skip faults (figure 2.11).

There is an alternative perspective on interseismic deformation that is commonly used in
both elastic and viscoelastic models. One can consider that over the long term, the fault moves
in essentially rigid block motion, with no strain outside a narrow fault zone. Between large
earthquakes, the upper part of the fault is jocked. Kinematically, this can be accomplished by
starting with rigid block motion and superimposing back slip at a rate equal to the Jong-term
slip rate on the seismogenic part of the fault. From equation (2.30), the velocity is thus

$ § d
v3(%z = 0) = 7 sgn(x;) — - tan~! (z) )

5 e (B |
= = tan ( d) \ | (2.35)
using the identity in equation (2.29). The back-slip model yields the same result for the
interseismic velocity derived previously (2.33) for a steadily creeping dislocation extending
infinitely below locking depth d.

2.2.3 Postseismic Slip
Last, consider buried slip with d; > dy. Thatcher (1975) modeled postseismic deformation

along the San Andreas fault assuming slip over a confined interval beneath the coseismic
rupture surface. During an earthquake, stress decreases along the slipping fault and is shed
to the lower part of the fault. If the fault in the lower crust creeps in response to the imposed
stress, there may be transient buried slip. This model is a very simple representation of that
process, More realistic models, which account for stress-driven frictional creep or distributed
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Figure 2.12. Postseismic displacement and strain.

viscoelastic deformation, will be considered in later chapters. This present model is useful
primarily because of its simplicity.
For confined slip between depths d; and d, the displacements at the free surface are

Uy (xp = 0) = _;_5 [tan-l (;%) —tan™"! (%)] , (2.36)

while the surface strains are

(= — ( d l ) _ ' (2.37)

2r \Z +x2 & +x}

Note that the strain, for buried slip, undergoes a sign change (figure 2.12), being positive
near the fault and negative away from the fault. This feature turns out to be characteristic of
deformation occurring over a finite depth interval. It is common to more sophisticated and
realistic models of postseismic deformation.

2.3 Distributed Slip

We can use the results in the previous section to derive a general expression for deformation
due to an arbitrary distribution of fault slip with depth. Consider the case where slip is
confined to the interval from-d to d + Ad:

sz =0) = —_n—s {tan*l (d-l}—dlad) —tan™! (%1)] . (2.38)
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Figure 2.13. Horizontal components of the coseismic displacements during the 17 August 1999 lzmit,
Turkey, earthquake. Dashed line indicates the rupture zone of the earthqguake. Data from Reilinger et al.
(2000).

Noticing that in the it as Ad -+ 0, this is the formal definition of a differential, we can write
the displacement due to slip over Ad as

—SAd 3 X
w3, % = 0) = —— = tan”! (gl) , (2.39)
sAd  x
_ _ 2.40
m X242 (2-40)

Thus, the displacement due to an arbitrary distribution of slip with depth, s(£), is
1 o2 X
=0)=~— ———dE&. 2.41
wst n =0 == 5, pa 2.41)

The forward problem, predicting the surface displacements at x; given the slip distribution
5(%), is solved simply by integrating. Commonly, we have measured displacements at the
earth’s surface and want to determine as much as possible about the distribution of skip
at depth in the earth. This inverse problem, estimating s(¢) from measured values of
t3(x, x; = 0), was'addressed by Matthews and Segall (1993) among others.

2.4 Application to the San Andreas and Other Strike-Slip Faults

The simple models explored in this chapter can be compared to actual displacements recorded
in large strike-slip earthquakes. Displacements during the 17 August 1999, Izmit, Turkey,
earthquake, a magnitude 7.5 event, were precisely measured using Global Positioning $ystem
(GPS) receivers. The herizontal components of the displacements during the earthquake are
shown in figure 2.13. The earthquake rupture was approximately 150 km long, hardly infinite.
However, if we focus on measurements made near the central part of the east-west trending
rupture, end effects can be minimized.
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Figure 2.14, Coseismic displacements during the 17 August 1999 lzmit, Turkey, earthquake. Data from
Reilinger et al. (2000). The fault parallel (east-west) component of the displacement is plotted as a
function of (north—south) distance perpendicular to the fault. Only stations near the middle of the
rupture are plotted to minimize effects of the fault ends. Also shown is the prediction of the simple
infinitely long screw dislocation equation (2.30), with slip of 3.6 m and a fault depth of 8 km.

Figure 2.14 shows the fault-parallel (east-west) displacements as a function of north-
south distance perpendicular to the fault. Also shown is the prediction from a simple two-
dimensional screw dislocation extending from the earth’s surface to a depth of 8 km with
3.6 m of slip. It is quite remarkable that this exceedingly simple maodel fits the data so well.
A thiree-dimensional model is required to fit the observations more accurately. Inversions of
the GPS measurements, which allow the slip to vary in magnitude over the fault plane, yield
a maximum slip of 5.7 m and an average slip of 3.6 m over the central 75 km of the rupture
{Reilinger et al. 2000).

We can also use the results of this chapter Lo estimate the interseismic slip rate on the San
Andreas fault and the depth to which the fault is locked between earthquakes—the so-called
locking depth. A summary of strain-rate data shown in Figure 2.15, from Thatcher (1990), shows
abroad zone of shearing centered on the San Andreas fault. We can interpret the data using the
simple model of a single-screw dislocation slipping at a constant rate given in equation (2.34).
This equation shows that the shear strain drops to half its peak value at a distance d from the
fault. From the figure, we estimate that half-width to be approximately 30 km. Given this, the
interseismic slip rate § is given by

§ = wd(2¢ 13- (2.42)

The data show a maximum engineering shear strain rate, (2¢,3}.ux, of approximately 5 x 10-7

" 1/yr. This leads to a slip rate of roughly 4.7 cm/yr.
These estimates are higher than our best current estimates. The main reason is that, in
most places in California, there is not a single fault but multiple paralle fauits. This causes the
strain to be spread out over a broader area than would be predicted from a single dislocation
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Figure 2.15. Shear strain rate as a function of distance from the San Andreas fault, In this figure, the.

strain rate is given in engineering strain, which is twice the tensor strain used in this text. (Light symbols,
southern California, dark symbols, northern California.) After Thatcher (1990).

and biases to large values the locking depth. Overestimating d also causes the slip rate to be
overestimated. ' :

The slip rate § is estimated to be closer to 3.5 cm/yr, from both geologic and geodetic
studies in the central creeping section of the San Andreas. With this slip rate and the observed
maximum shear strain rate of 5 x 1077 1/yr, we estimate d to be approximately 20 km.

One can do a better job by considering measurements from a more limited geographic
region. The Southern California Farthquake Center (SCEC) has produced a crustal velocity
field using GPS, Very Long Baseline Interferometry (VLBI), and Electronic Distance Meter
(EDM) measurements. The GPS data span the time interval 1986 to 1997 and consist of
a mixture of episodic campaign measurements and continuously recording stations. VLBI
measurements at 10 southern California sites were collected between 1980 and 1994, whereas
the EDM surveys were conducted predominantly from 1970 to 1992,

In order to isolate a relatively simple part of the San Andreas fault system, we focus on
data from the Carrizo Plain section, north of the Big Bend in the San Andreas (figure 2.16).
In this region, the San Andreas fault trace is relatively straight and simple. Also the area is
not complicated by additional faults, except perhaps in the Santa Maria basin. The velocity
vectors, which are displayed in a North America fixed reference frame, are very nearly parallel
to the San Andreas and increase in magnitude from east to west. )

In order to model these velocities, we need to account for the fact that the data and
model are in different reference frames. The data are in a North America fixed frame; sites on
stable North America are expected to have zero motion. The model given by equation (2.33),
however, predicts half the motion on one side of the fault, and half on the other side. By
syrmmetry, the fault trace has zero velocity. One must account for this difference in comparing
the model predictions to measured velocities.

Dis
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Figure 2.16. Interseismic station velocities relative to stable North America from the 1980s and 1990s
as measured by a variety of techniques, analyzed and compiled by the Southern California Earthquake
Center. SAF = San Andreas fault; SGHF = San Gregorio Hosgri fault; BB = Big Bend of San Andreas;
SMEB = Santa Maria basin; SB = Santa Barbara.

Figure 2.17 shows a profile of the fault-parallel component of velocity perpendicular to
the trend of the San Andreas fault. The San Andreas is located at x = 0. Also shown is
the theoretical prediction from equation (2.33) for a fault-locking depth of 20 km and a slip
rate of 39.5 mm/yr. While there are significant misfits at points farthest from the fault, the
comparison between the observations and the prediction of the simple model is satisfactory.
Discrepancies could result from larger than expected observational errors or defects in the
model, such as additional deformation sources, nonuniform elastic properties, or complexities
in fault geometry, to name a few. We will revisit these data in chapter 12 in the context of
viscoelastic earthquake cycle models. With these models, the surface velocity field can be fit
with slip rates consistent with paleoseismic observations and locking depths consistent with
the depths of major strike-slip earthquakes in California. :

2.5 Displacement at Depth :

The displacements within the earth can be computed from equation (2.25). Care must be
taken when evaluating the tan~! functions because they are discontinuous. Mathematically,
the discontinuities are referred to as branch cuts. We must ensure that the branch cuts occur on
the fault surface and not elsewhere. _ :

First, recall that figure 2.2 defined the dislocation to extend along the positive x, axis, with
the angle & measured positive clockwise from x;. Looking from above the fault, the 456,27
solution is left-lateral, with the negative x; side moving in the positive x; direction. Add a
right-lateral rigid body offset along the fault with slip that exactly negates the slip due to the
dislocation fof ¥, > 0 (figure 2.18). The sum is a right-lateral dislocation that extends along the
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Figure 2.17. Velocity profile across the San Andreas fault, Fault-parallel component of velocity for
the stations shown in figure 2.16. Error bars are one standard deviation. The San Andreas fault is
approximately located at x = 0. Also shown is the predicted velocity of an infinitely long buried screw
dislocation from equation (2.33) for a fault-locking depth of 20 km and a slip rate of 39.5 mm/yr.
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Figure 2,18, Definition of branch cuts for a strike-slip fault. Figure on the left shows the dislocation
extending along the positive x; axis. Addition of rigid body slip of opposite sign cancels the slip in the
domain x; > 0 and generates an oppositely signed disiocation for x, < 0.

negative x; axis. Thus, flipping the dislocation plane 180 degrees changes the sense of slip on
the fault. For example, for a buried dislocation extendin g in the negative x; direction, its image
dislocation extending in the positive x, direction, as in figure 2.5, has the same sense of slip,
since changing the orientation of the plane 180 degrees is equivalent to changing the sense
of slip.

For the dislocation extending along the negative x; direction, the branch cut is located at
§ = m, so we must define the argument of the function 6 tobe -7 < § < . Figure 2.19 shows
the branch cuts for a buried dislocation between depths d; and d,. Numerical calculations
that compute the displacements in the body should use an arctangent function that takes two
arguments and produces the correct sign to represent an angle in each of the four quadrants.
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Figure 2.19. Definition of branch cuts (wavy lines) for a strike-slip fault in a half-pianc.

Figures 2.6 and 2.8 show the displacement field for uniform-slip dislocations. Notice that
the displacements decay quite rapidly below the dislocation and with distance away from the
dislocation.

2.6 Summary and Perspective

Itisworth reviewing the approach and assumptions made in this chapter, We assumed that the
earth could be modeled as a homogeneous, isotropic, elastic half-space. Qur simple fault model
involved specifying the displacement on the fault surface. For two-dimensional antiplane
geometry, as might approximate a very long strike-slip fault, we found that the displacements
must satisfy Laplace’s equation. Solutions in a full-space are easily constructed, and half-space
solutions are then found using the method of images. The displacements at the free surface are
found to follow the familiar tan~! distribution, with argument either x/d or d/x, depending on
whether the fault is locked or slipping at the earth’s surface.

The limitations to these simple models are manifold. The main benefits of the results
developed in this chapter are their simplicity and the fact that to first order, they fit some
geodetic observations quite well. However, faults are never infinitely long, and we may be very
interested in effects near the end of an earthquake rupture. Three-dimensional dislocations
will be the subject of chapter 3. Furthermore, we have so far ignored the earth’s curvature and
topography; this will be considered in chapter 8. The earth is not homogeneous and isotropic,
nor perfectly elastic, for that matter. Methods for determining elastic fields due to dislocations

“in heterogeneous earth models are discussed in chapter 5, The effects of viscoelastic relaxation
are described in chapter 6. Last, we shouid note that by specifying the fault slip, we are unable
to say anything about how that slip comes about. A more complete description of faulting
involves specifying a constitutive law for the fault surface, or fault zone, and then computing
how the slip develops as a function of time for some loading geometry (as in chapter 11). As
a first step in that direction, we will consider crack models in which the stress change (stress
drop) on the fault surface is specified in chapter 4.

In the next chapter, we will begin by deriving dislocation solutions for two-dimensional
dip-slip faults and faults in three dimensions.




Chapter 2

2.7 Problems
1. Show that the stress due to a pair of screw dislocations is proportional to cos(26)/72, as in
equation (2.19).

2. Use the principle of superposition to derive expressions for the surface velocity and strain
rate for two parallel faults that are locked from the earth’s surface to some depth d. The first
fault is located at x, = & and has slip rate §;, and the second fault is located at x; = &g,
with slip-rate $2. Generalize this to an arbitrary number of faults, This simple model can
be compared to geodetic measurements collected across the San Andreas fault system in
northern California.

3. Show that the surface displacements for a slip distribution that varies linearly with depth as
S(E) = s5(1 — £/ D) are given by

2 2
@@hh:m=%ﬁm4(g)—ﬁ4%(D;“)} (2.43)
1

4, Prove that for a single screw dislocation buried in'an elastic half-space that does not cut
the free surface, the displacement field at the free surface is independent of the dip of the
dislocation plane (see figure 2.11).

5. Write a script to plot the interseismic displacements within the earth due to an infinitely
long, buried nonvertical strike-slip fault. Include the contributions from the image sources
50 that the plane x; = 0 is traction free.
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