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10 Internal Waves: Reflection and Relation to Normal Modes

This lecture is based on a set of notes written by R. Pawlowicz

10.1 Reflection at a Boundary

If we consider waves propagating downward toward a flat bottom, they will reflect upward

in a manner that we would expect, except that we must remember that the group speed is

down (toward the boundary) means the phase speed (and k) is up. Its easier to draw the

k’s below the boundary (Figure 10.1).

Figure 10.1 An incident internal wave reflecting from a flat bottom. Black vectors (in real ocean

above the bottom) represent the group speed or direction of energy propagation. Green arrows,

shown below the bottom, are the two wave vectors.
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However, if we consider the more realistic case of a slightly tilted bottom, the waves do

not reflect around the normal to the surface. The outgoing wave, as it will have the same
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frequency as the incoming wave, must be at the same angle to the vertical as the incoming

wave. So the reflection is around a vertical (or horizontal line).

Mathematically one can show that the wavelength along the boundary must match in

the outgoing and incoming wave. So the magnitude of ~k projected along the boundary is

conserved.

Gentle Slope Waves are Forward Reflected and ray in shallower water has a larger |~k| and

is thus the shorter wave (Figure 10.2). It also has a slower group speed.

Figure 10.2 An incident internal wave reflecting from a gently sloped bottom. Black vectors (in

real ocean above the bottom) represent the group speed or direction of energy propagation. Green

arrows, shown below the bottom, are the two wave vectors and red vectors are their projection on

the surface.
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Steep Slope Steep slope means the slope is steep compared to the wave propagation angle.

Waves are Back Reflected and the ray away from the shallow water has a larger |~k| and is
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thus the shorter wave (Figure 10.3). It also has a slower group speed.

Figure 10.3 An incident internal wave reflecting from a steep sloped bottom. Black vectors (in

real ocean above the bottom) represent the group speed or direction of energy propagation. Green

arrows, shown below the bottom, are the two wave vectors and the red vector is their projection on

the surface.
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Summary

• Reflection angles are with horizontal or vertical, not with the slope.

• Incoming and outgoing wave numbers and thus wavelengths are different. So there is

an exchange of energy between spatial scales.

• For a given frequency, ω, which implies a given angle of propagation, there is a slope

which matches that angle of propagation. Incoming waves are reflected to run directly
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along the boundary, wave infinite energy there and zero wavelength. This angle is

called the critical angle.

• If a tide or other very long (e.g. nearly zero wavelength) oscillation encounters a critical

slope, it can generate internal waves. This slope often occurs at the shelf-break and

thus the shelf-break or slope just below the shelf-break is often a source of internal

waves at tidal frequencies.

10.2 Internal Waves and Internal Modes

Consider an internal wave bouncing up and down between a bottom and the surface. The

two are almost flat but not quite so there will be a bit of scattering. After a while, the energy

will almost be uniformly distributed from the top to the bottom of the domain because at

each horizontal position, there will be as much energy propagating up as there is propagating

down.

So consider an internal wave of frequency ω and wavenumber (k,m) and its counterpart

travelling upward, frequency ω and wavenumber (k,−m). So

w = w1 + w2 = wo exp[i(kx+mz − ωt)] + wo exp[i(kx−mz − ωt+ φ)]

where φ is a phase shift between the two waves. Now at the surface z = 0 the vertical

velocity must be zero so:

0 = wo exp[i(kx− ωt)] + wo exp[i(kx− ωt+ φ)] (1)

= wo exp[i(kx− ωt)] [1 + exp(iφ)] (2)
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So exp(iφ) = −1. At the bottom, z = −H , the vertical velocity must also be zero so:

0 = wo exp[i(kx−mH − ωt)] + wo exp[i(kx+mH − ωt+ φ)] (3)

= wo exp[i(kx− ωt)] [exp(−imH)− exp(imH)] (4)

=
i

2
wo exp[i(kx− ωt)] sin(mH) (5)

So mH = nπ Substitute this into the internal wave dispersion relation

ω2 =
N2(k2 + ℓ2) + f 2m2

k2 + ℓ2 +m2
(6)

=
f 2 + a2

n
k2

1 +
(

kH

nπ

) (7)

≈ f 2 + a2
n
k2 (8)

where we have neglected ℓ and assumed that the horizontal wavelength is large compared

to the depth. an = NH/nπ which is the nth baroclinic Rossby radius. Thus our dispersion

relation is the dispersion relation for internal Poinare waves.

If we bounce internal waves up and down long enough, we distribute the energy uniformly

with depth and we get vertical normal modes! Mode 1 waves look like Plate 10.1.

Plate 10.1: Movie showing particle movement in internal, mode 1 waves. Copyright M. Tomczak.

Available at http://www.es.flinders.edu.au/~mattom/IntroOc/notes/figures/animations/

fig10a7c.html.


