Short communication

Laboratory derived constraints on electrical conductivity beneath Slave craton

Nikolai S. Bagdassarov a,*, Maya G. Kopylova b, Sandrine Eichert c

a Institut f"ur Geowissenschaften, Universit"at Frankfurt, Feldbergstra"aße 47, am Main D-60323, Germany
b Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
c ´Ecole et Observatoire des Sciences de la Terre, Universit´e Louis Pasteur, 5 rue Ren´e Descart, Strasbourg Cedex F-67084, France

Received 23 December 2005; received in revised form 5 January 2007; accepted 9 January 2007

Abstract

The depth profile of the electrical conductivity, \(\sigma(d) \), beneath the Central Slave craton (Canada) has been reconstructed with the help of laboratory measurements carried out on peridotite xenoliths. \(\sigma(T) \) of xenoliths was determined in the piston-cylinder apparatus at 1 and 2 GPa and from 600 to 1150 \(\degree \)C. \(\sigma(T) \) of xenoliths follows the Arrhenius dependence with the activation energy, \(E_a \), varying from 2.10 to 1.44 eV depending on temperature range and the Mg-number. The calculated xenolith geotherm and the suggested lithology beneath the Central Slave have been used to constrain \(\sigma(d) \) as follows: \(\sigma(d) \) in the crust varies between \(0.5 \times 10^{-5} \) and \(10^{-3} \) S/m; the lithospheric \(\sigma(d) \) sharply decreases below the Moho at 39.4 km to \(0.5 \times 10^{-8} \) S/m, which corresponds to 460 \(\degree \)C, and then gradually increases with the depth \(d \) to \(0.5 \times 10^{-2} \) S/m. The modeled MT-response of the constrained \(\sigma(d) \) profile has been compared with MT-observations [Jones, A.G., Lezaeta, P., Ferguson, I.J., Chave, A.D., Evans, R.L., Garcia, X., Spratt J., 2003. The electrical structure of the Slave craton. Lithos, 71, 505–527]. The general trend of the calculated MT-response based on the \(\sigma(d) \) model mimics the MT-inversion of the field data from the Central Slave.

© 2007 Elsevier B.V. All rights reserved.

PACS: 91.60.Pn; 93.30.Jg; 91.25.Qi; 91.35.Cb

Keywords: Craton; Xenoliths; Electrical conductivity; Magneto-telluric response

1. Background

Evolution of the thermal and mechanical thickness of the ancient lithosphere beneath stable cratons and continental platforms is still a puzzle for petrologists and geophysicists (Artemieva and Mooney, 2001; Sleep, 2003, 2005). The effective thickness of a chemically depleted layer, thermal and rheological boundary layers beneath Archean cratons, varies from 130 to 220 km according to geothermobarometry of xenoliths, from 150 to 250 km according to heat flow studies, and from 250 to 400 km according to teleseismic and reflected wave data (see review of Artemieva and Mooney, 2001). The general consensus exists on the fact that the thermal thickness of the Archean buoyant continental lithosphere has been stabilized soon after its formation and remains more or less constant since then, \(\sim \)225 km (Sleep, 2003). The ancient cratonic lithosphere could be thermally eroded later, during continental accretion processes and its modern thickness could be thinner than the initial
one. The rate of the thermal erosion depends on the lat-
eral size of the initial Archean continental block. The
positive correlation between craton size and keel thick-
ness indicates that the reworking of Archean lithosphere
includes lithospheric erosion and chemical modifications
of rocks and their properties in the whole lithospheric
column. Ancient cratons that are smaller in size at the
present time, experienced the largest thinning and
reworking (Artemieva and Mooney, 2002). According
to some electromagnetic surveys, the thickness of the
ancient lithosphere, associated with a steep increase of
$\sigma(d)$ as a function of depth d, is about 150–230 km (e.g.
Schultz et al., 1993). However, these data are very diffi-
cult to interpret as a real lithospheric thickness because
the electrical conductivity $\sigma(d)$ and seismic velocities
vary not only with the depth d but also with the age or the
timing of the continental accretion. In Archean, the
mantle composition in general has been more chondritic than
later. Thus, the reduced oxygen fugacity at that time has
possibly influenced the Fe–Mg-mineralogical composi-
tion of the upper mantle rocks, which in turn resulted in
a distinct contrast of the electrical conductivity profiles
beneath ancient Archean cratons and later Proterozoic
continents (Boern er et al., 1999).

In this paper, we have examined the electrical
conductivity of peridotite xenoliths in laboratory and
have constrained the electric conductivity profile, $\sigma(d)$
beneath Slave craton by using $\sigma(T)$ of xenoliths from the
Central Slave. The xenolith geotherm calculated from the
géothermobarometry of peridotite xenoliths of the Cen-
tral Slave. The xenolith geotherm calculated from the
beneathSlave craton by using $\sigma(d)$ model beneath Central
Slave (Canada) has been used to estimate the
depth profile of $\sigma(d)$.

2. Description of the Slave craton

The Slave craton in the N–W part of Canada is a
small (about 600 km in N–S by 400 km in E–W) sta-
ble Archean craton hosting the oldest rocks ca. 4.03 Ga
(Davis et al., 2003). Electro-magnetic studies (EM)
demonstrated, that the Central Slave mantle contains a
layer of the anomalously conductive rocks with a resis-
tivity $\leq 20 \, \Omega \, m$ at depths 80–130 km which coincides
spatially with the ultradepoled layer of harzburgites
(Jones et al., 2001, 2003). The nature of the high σ layer
has been attributed to the presence of carbon on grain
boundaries of minerals and/or of C as a graphite phase
while the depth of this conductor is above the graphite-
diamond stability field (Jones et al., 2003). The tectonic
origin and the structure of the central Slave lithosphere
may be related to stacking and to the subcretion of exotic
slabs at ca. 2.63 Ga ago (Davis et al., 2003). The missing
link between EM conductivity anomaly and chemical
depletion of the mantle peridotites could be a redox state
of rocks beneath the craton (McCammon and Kopylova,
2004). In this paper, the $\sigma(d)$ model beneath Central
Slave is revisited by using the laboratory derived $\sigma(T)$
of xenoliths from this area.

The lithology below the Central Slave is shown in
Fig. 1 (left panel). The lower crustal mafic rocks ascribed
to the Moho depth are likely to be granulitic (Pearson
et al., 1999). The Moho boundary occurs at 39.4 km
according to the teleseismic data (Bank et al., 2000) and
does not correspond to a sharp change in the lithology.
The change in the lithology from crustal to mantle rocks
occurs somewhere within ca. 20 km, i.e. the crust-upper
mantle boundary is grading from a mixture of felsic
and mafic granulites for 10 km above the seismic Moho
to a mixture of mafic granulites and mantle lherzolites
for 10 km below the seismic Moho, with a decreasing
proportion of mafic granulites upwards and downwards
(Griffin and O’Reilly, 1987). The lower 10 km of the
crust can be approximated by a mixture of granulites
and rocks of the Central and the East Slave basement
complexes, constituting the lower crust between 15 and
40 km in the Lac de Gras area (Bleeker, 2003). The
shallow crust consists of the intermediate volcanic
and trondjemitic–tonalite–granite plutons (13–15 km); tur-
biditic greywackes (4–13 km), combined in one layer
in Fig. 1, and granites (0–4 km). The upper 10 km of the
mantle suggested to be composed of a mixture of
granulites and spinel peridotites. The Central Slave man-
tle lithology is characterized by a shallow ultradepoled
layer with a high ratio of low-Ca harzburgite to lherzo-
lite extending down to ~ 150 km (Griffin et al., 1999).
The deepest ultradepoled harzburgites are at 1100 $^\circ$ C
and $P = 5.3$ GPa or 159 km (Menzies et al., 2004). The
transition from ultradepoled harzburgites to deeper lher-
zolites occurs from ~ 140 to ~ 160 km. Due to the
similarity between the thermal state of the central and
the N Slave lithospheres (Kopylova and Garo, 2004), the
depth facies of peridotites in two locations should coin-
cide. The ultradepoled low-Ca harzburgitic layer of the
Central Slave continues to the North (Griffin et al., 1999;
Kopylova and Garo, 2004). The overall thickness of the
lithosphere beneath the Lac de Gras is bigger than near
the S and SW margins. The lithosphere there consists
of material like the deeper layer beneath Lac de Gras.
The sharp boundary between the two layers suggests two
different overlapping processes of the lithospheric evo-
lution. The upper layer formed before and during the
accretion stage of terrains (arcs, accreting edges) to the
ancient continent. The deeper layer formed due to the
ascending mantle plume (Griffin et al., 1999). The ther-
mal interaction of the plume head with the ultradepoled
layer might have changed the electrical properties of deep rocks in central part of the Slave craton and might have caused an occurrence of the central Slave conductor. The minimum temperatures of 1150 °C for high-T sheared peridotites (Pearson et al., 1999) indicate that the transition from low-T to high-T peridotite below central Slave begins at ~210 km (Fig. 1).

The mantle geotherm is derived from the Brey–Köhler thermobarometry (BK) of the mantle xenoliths (Menzies et al., 2004). The geotherm $T(d)$ beneath Central Slave has been calculated as follows:

- The heat capacity is $C_p = 1.24 \text{ J kg}^{-1} \text{K}^{-1}$. T on the surface has been fixed to 283 K, at $d = 300 \text{ km}$ the heat flux in W/m² is $3.75 \times 10^{-3} \text{ W m}^{-2}$ and the thermal conductivity in W m⁻¹ K⁻¹ at a corresponding $T(d)$ in K. At $d > 240 \text{ km}$ $T(d)$ follows the adiabate with the potential $T = 1280 \text{ °C}$ and the gradient 0.25 K/km (Sleep, 2003). From 0 to 39.4 km depth K_T varies with d (in km) as $K_T = 2.22 + 1.5 \times 10^{-2} d$. The intensity of the radiogenic heat production in the crust is assumed to be $A = 2.16 \times 10^{-6} \exp(-d/20.7)$ in W m⁻³, where d is the depth in km. Triangles are PT-estimation of xenoliths from Menzies et al. (2004) according to the thermobarometry of Brey and Köhler (1990).

The mantle geotherm is derived from the Brey–Köhler thermobarometry (BK) of the mantle xenoliths (Menzies et al., 2004). The geotherm $T(d)$ beneath Central Slave has been calculated as follows:

- The heat capacity is $C_p = 1.24 \text{ J kg}^{-1} \text{K}^{-1}$. T on the surface has been fixed to 283 K, at $d = 300 \text{ km}$ the heat flux in W/m² is $3.75 \times 10^{-3} \text{ W m}^{-2}$ and the thermal conductivity in W m⁻¹ K⁻¹ at a corresponding $T(d)$ in K. At $d > 240 \text{ km}$ $T(d)$ follows the adiabate with the potential $T = 1280 \text{ °C}$ and the gradient 0.25 K/km (Sleep, 2003). From 0 to 39.4 km depth K_T varies with d (in km) as $K_T = 2.22 + 1.5 \times 10^{-2} d$. The intensity of the radiogenic heat production in the crust is assumed to be $A = 2.16 \times 10^{-6} \exp(-d/20.7)$ in W m⁻³, where d is the depth in km. Triangles are PT-estimation of xenoliths from Menzies et al. (2004) according to the thermobarometry of Brey and Köhler (1990).

The peridotite samples used for the measurements of $\sigma(T)$ are listed in Table 1. They are derived from the Jericho kimberlite of the N-Slave craton and were previously characterized by Kopylova et al. (1999) and Kopylova and Garo (2004). All types of the Central Slave peridotites are also found in the N-Slave at Jericho. In order to construct a model of $\sigma(d)$, $\sigma(T)$ of each peridotite sample has been measured in the piston-cylinder apparatus at $P = 1–2 \text{ GPa}$ and at $600 < T < 1150 \text{ °C}$, below melting point.

The estimation of dc σ consists of measuring the complex electrical impedance $Z(\omega) = Re[Z(\omega)] + i \cdot Im[Z(\omega)]$, where ω is the frequency. The scans of $Z(\omega)$ from 100 kHz to 10 mHz were registered at each T
Table 1
Fitting parameters of $\sigma(T)$ of peridotite xenoliths from Slave craton (Canada) from Eq. (1)*

<table>
<thead>
<tr>
<th>Sample description</th>
<th>$\ln \sigma_0$ b</th>
<th>E_a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth: 39.4–100 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-16: Spl Pd</td>
<td>5.35</td>
<td>1.44 (1.33–1.54)</td>
</tr>
<tr>
<td>8-7: Spl Lhz</td>
<td>7.88</td>
<td>1.70 (1.66–1.92)</td>
</tr>
<tr>
<td>11-18: Spl Pd</td>
<td>12.72</td>
<td>2.12 (1.88–2.17)</td>
</tr>
<tr>
<td>9-12: Spl Hbgh</td>
<td>8.82</td>
<td>1.75 (1.56–1.82)</td>
</tr>
<tr>
<td>Depth: 90–160 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-4: Spl Gar Pd</td>
<td>10.10</td>
<td>1.84 (1.80–1.92)</td>
</tr>
<tr>
<td>Depth: 120–210 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-2: low-T Gar Pd</td>
<td>15.07</td>
<td>2.23 (1.77–2.36)</td>
</tr>
<tr>
<td>Depth: 190–200 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-5: fertile high-T Gar Pd</td>
<td>6.20</td>
<td>1.48 (1.32–1.59)</td>
</tr>
<tr>
<td>Depth: > 210 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-9: high-T Gar Pd</td>
<td>8.77</td>
<td>2.02 (1.44–2.1)</td>
</tr>
</tbody>
</table>

*a Activation energy in parenthesis corresponds to the intervals $T < 850^\circ C$ and $T > 850^\circ C$, respectively.

b σ_0 is in S/m.

c Nomenclature of rocks and sample labels are from Kopylova et al. (1999), Kopylova and Garo (2004) and McCammon and Kopylova (2004).

and P and proceeded on Argand-plots, i.e. the dependence of $-\text{Im}[Z]$ versus $\text{Re}[Z]$. The high ω-part of a plot represents a semi-circle and corresponds to the bulk properties. Data processing consisted of fitting of $-\text{Im}[Z]$ versus $\text{Re}[Z]$ to two $R - C$ constant phase elements connected in parallel. The bulk resistance is taken as an active resistance R of the high ω semi-circle. The specific resistance ϱ has been calculated using the known geometric factor of electrodes G_f: $\varrho = R \times G_f$. The measuring cell, which was in a shape of a co-axial cylindrical capacitor with electrodes made of Mo-foil 0.05 mm in thickness, has a geometric factor $G_f = 5–6$ cm. The starting powder samples having a grain size ca. 20–100 μm, have been sintered over ca. 70 h at 1 GPa and ca. 1100 $^\circ$C. The piston-cylinder cell consisting of CaF$_2$, graphite and boron nitride, has been described elsewhere (Maumus et al., 2005). A typical fO_2 in the cell at 1200–1300 $^\circ$C is between IW and FMQ buffers (Maumus et al., 2005). These reduced conditions correspond to fO_2 estimations beneath the Slave based on the Mössbauer study of xenoliths (McCammon and Kopylova, 2004). The final dc conductivity data of rocks have been taken from the 2-day heating–cooling cycle. The 3-day heating–cooling cycle does not differ from the second one.

$\sigma(T)$ of the peridotite samples is presented in Fig. 2. $\sigma(T)$ of peridotites varies for ca. 1.5 orders of magnitude depending on the mineralogical composition. At $T < 800$ $^\circ$C, the most conductive is the fertile lherzolite 23-5 having a large proportion of Gar, ca. 12.5 vol.% (Kopylova and Russell, 2000), while at $T > 850^\circ C$ the most conductive is the low-T garnet lherzolite. The high-T garnet peridotite is less conductive at all temperatures and this rock corresponds to the deepest layer of the Central Slave lithosphere. σ of spinel peridotites which are all ultra-depleted, is similar to those of the garnet-bearing peridotites at a bigger depth. The average $\sigma(T)$ of all peridotites is close to the standard olivine model $SO2$ of Constable (1993) within ±0.5 lg units. At $T > 850^\circ C$, the activation energy of $\sigma(T)$ (E_a) for peridotites varies from 1.7 to 2.1 eV at 1 GPa. The electrical conductivity of the studied rocks is mainly controlled by σ of Ol, because E_a of Ol-crystals is 1.41 eV, while E_a of Px is ca. 1.8–1.9 eV (Tyburczy and Fisler, 1995). σ measured at 1 and 2 GPa does not show any significant pressure dependence of σ which is typical for olivine rich mafic rocks (Xu et al., 2000).

The depth model $\sigma(d)$ beneath the Central Slave craton is based on the Arrhenius equation
\[
\ln(\sigma) = \ln \sigma_0 - \frac{E_a}{kT},
\]

where \(\sigma\) is the bulk electrical conductivity, \(\sigma_0\) is the pre-

exponential constant, \(E_a\) is the activation energy, \(k\) is the

Boltzmann constant and \(T\) is the temperature in K. The

constants, \(\sigma_0\) and \(E_a\) for studied peridotites are listed in

Table 1.

For modelling of \(\sigma(d)\), a layer from 36 to 90 km has

been taken as a mixture of spinel peridotites 11-

18, 8-7 and 9-12 (Fig. 1). At \(d > 90\) km, spinel-garnet

peridotite 41-4 was added to the mixture, etc. \(\sigma(T)\)

has been calculated as an arithmetic mean value of

log\((\sigma_i(T))\) of individual rocks, i.e. according to a log-

arithmic mixing model of (Lichtenecker, 1926). Due to

the closeness of maximum and minimum conductivi-

ties of peridotitic rocks the logarithmic mean values is

about to Hashin–Shtrickman bounds, which have been

calculated for rock mixing according to (Ledo and Jones,

2005).

The specific resistivity \(\varrho\) of the crust in \(\Omega\) m has been

approximated as follows:

- From 0 to 4 km: \(\ln(\varrho) = 3.7-0.09d\), from 4 to 13 km:
 \(\ln(\varrho) = 3.34\) (Ingham, 1997).
- From 13 to 30 km: \(\ln(\varrho) = 5.85-0.026d + 3.47 \times 10^{-4} d^2\),
 which is the approximation of the data for
 quartz diorites (Parkhomenko, 1967).
- From 30 to 39.4 km: \(\ln(\varrho) = 11.9-0.19d - 1.25 \times 10^{-3} d^2\),
 which represents an approximation of \(\varrho\) of a
 mixture consisting of quartz diorite and mafic gran-
 ulite (Fuji-ta et al., 2004) with a continuous increase
 of the mafic granulate fraction from 0\% at 30 km to
 100\% at 39.4 km. From 39.4 to 50 km, \(\varrho\) has been
 taken as a mixture of mafic granulate and peridotites
 with the continuous decreasing fraction of the mafic
 granulate from 100\% at 39.4 km to 0\% at 50 km depth.
 Below 50 km, \(\sigma(T)\) has been calculated with the use
 of the constants of Eq. (1) from Table 1 and the lithol-
 ogy from Fig. 1. The left panel of Fig. 1 shows the
 smoothness of mineralogical boundaries. The conduc-
 tivity between boundary layers has been calculated as
 a mixture of rocks which changes from 0\% at a depth
 indicated on the left side to 100\% at a depth indicated
 on the right side of the panel.

The modelled \(\sigma(d)\) is shown in Fig. 3. In the crust, \(\sigma\)

is from \(2 \times 10^{-6}\) to \(10^{-3}\) S/m, sharply decreases below

the Moho and then gradually increases with the depth. When the measured \(\sigma(T)\) of spinel peridotites is inter-

polated to the Moho depth 39.4 km and \(T = 460^\circ\)C, the

conductivity \(\sigma\) would be \(\sim 10^{-7}\) S/m. This is a lower

limit to \(\sigma\) of the sub-Moho peridotite, as it is based on

the extrapolation of \(\sigma\) measured at \(T > 580^\circ\) C to lower

\(T\). In reality, the slope of \(\sigma(T)\) is gentler at \(T < 580^\circ\) C

due to the change of the conductivity mechanism in Ol
(Sakamoto et al., 2002). The change of the slope on the

Arrhenius plots of \(\sigma(T)\) for mafic rocks is very significant

at \(T < 500^\circ\) C (Fuji-ta et al., 2004). The extrapolated

\(\sigma \approx 10^{-7}\) S/m is much lower than that of a peridotite

below the Moho, assessed from the field conductivity

measurements, \(\approx 10^{-2}\) S/m by Jones (1999), but close to

the experimentally measured values in dry olivine, from

\(3 \times 10^{-8}\) to \(10^{-5}\) S/m at \(T \approx 450–465^\circ\)C, by Xu et al.

(2000). In the asthenosphere, at \(d > 210\) km, the electrical

conductivity is \(10^{-3} < \sigma < 10^{-2}\) S/m, which is typical

for \(\sigma\) in the sub-lithospheric upper mantle (Bahr and

duba, 2000). The lithosphere–asthenosphere transition in

the model is marked by a significant drop in \(\sigma\) (Fig. 3)
at depth ≈ 200–210 km. The high-\(T\) garnet peridotites that represent the astenosphere and have been metasomatized by astenospheric melts, possess much higher ϱ than the overlaying fertile peridotite. The chemical composition of rocks at the depth ≈ 200 km changes significantly. According to (Kopylova and Russel, 2000), on the boundary between fertile peridotite and high-T garnet peridotite the olivine content in rocks increases from about 60 to 77 vol.%, Cpx decreases from 11 to 2.6%, and garnet decreases from 12.5 to 5.1%. This is also accompanied by the increase of Mg-number $\approx 2.6\%$, and garnet decreases from 12.5 to 5.1%. This figure shows the variation of $\sigma(d)$ with d is much smaller while $T(d)$ follows the adiabatic gradient: $(dT/dz)_S = gT/\alpha/C_p \sim 0.25 \div 0.3$ km, where $g = 9.81$ m2/s, $T = 1673$ K, $\alpha = 2 \times 10^{-5}$ K$^{-1}$, $C_p = 1240$ J kg$^{-1}$ K$^{-1}$.

4. Modelled MT-response

For the modelled $\sigma(d)$ (Fig. 3), the apparent resistivity (ϱ_a) and the phase shift (Φ) between electric and magnetic field vectors of a potential magnetotelluric response (MT) have been calculated for the 1D magnetotelluric forward modeling with the help of a Wait-algorithm (Wait, 1972). The MT-response of the model is shown in Fig. 4. The calculated MT-response differs from the average MT-response obtained from all stations in the Slave craton region (Jones et al., 2003). The data from the station Lac de Gras indicate a slightly lower electrical resistance than the model. At periods < 1 s, ϱ_a, for the suggested $\sigma(d)$, agrees with the average field data. At periods > 1 s ϱ_a of the model is lower than that of the average MT-inversion but is still higher than the resistance obtained from the Lac de Gras station (Jones et al., 2003). For Φ, the agreement between the MT-data with the model is not good starting from the periods > 0.1 s, but there is a satisfactory agreement at periods $> 10^3$ s for the Lac de Gras station of Central Slave.

The disagreement between modelled and observed MT-responses may be due to several factors: (a) The presence of conductive granulites in the lower crust may decrease the quality of the model inversion in the mantle below the Moho due to a shielding effect. On the other hand, the data of Jones and Ferguson (2001) indicate a very unusual nonconducting lower crust beneath the Slave craton. (b) In the $\sigma(d)$ model, the temperature dependence of $\sigma(T)$ obtained in laboratory has been extrapolated to very high and low temperatures. This extrapolation, especially at low temperatures, may result in an overestimation of the electrical conductivity on the Moho boundary. (c) The chosen averaging procedure to calculate $\sigma(T)$ from a rock mixture is oversimplified. The changes of mineralogy of rocks and in temperature are also accompanied by a continuous variation of the redox state of Fe$^{2+}$ which is difficult to take into account in mixing models of electrical conductivity. (d) The numerical modelling of the MT-response is based on the simplistic geometry and boundary conditions, 2D effects of rock layering were not included in the direct modelling procedure.

5. Conclusions

The difference between the average Slave MT inversion and $\sigma(d)$ from the laboratory measurements in Fig. 3 indicates that the mineralogy and electrical properties of peridotites in general can be accounted for in the observed electrical conductivity in the Central Slave craton mantle. Our data can to some extent explain the nature of a conductive layer beneath Central Slave craton by the presence of fertile peridotites overlaying much less conductive layers of high-\(T\) garnet peridotites. The contrast between σ of these two rocks is about one order of magnitude (see Fig. 2).
(1) The Central Slave mantle conductor mapped at depths with the dominated depleted spinel peridotite mineralogy cannot be explained fully with the increased σ due to the depleted spinel peridotite. As follows from $\sigma(T)$ measurements (Fig. 2), the spinel peridotites have similar σ as garnet peridotites.

(2) The mineralogy of the resistive high-T asthenospheric peridotite cannot be responsible for the conductive asthenosphere. The changes in the mineralogy between the low-T lithospheric peridotite and high-T asthenospheric peridotite fail to be accounted for in the enhanced σ in the asthenosphere beneath the Central Slave craton. However, it is possible that a smaller grain size in the Slave high-T peridotites, most of which are sheared (Kopylova et al., 1999; Menzies et al., 2004), makes the asthenosphere more conductive according to experiments with sintered olivine powder compacts (ten Grotenhuis et al., 2004). The presence of eclogites in the Slave mantle are unlikely to contribute to the observed discrepancy between the modelled and the observed MT-responses. Eclogite rocks in general possess smaller activation energy of σ than peridotites, $E_a \sim 0.7$ eV (Lastovickova, 1975) in comparison with olivine-rich rocks, which makes the overall depth increase of σ less steeper in comparison with eclogite-free upper mantle rocks.

References

Pearson, N.J., Griffin, W.L., Doyle, B.J., O’Reilly, S.Y., van Achterbergh, E., Kivi, K., 1999. Xenoliths from kimberlites pipes of the Lac de Gras area, Slave Craton, Canada. In: Gurney, J.J., Gurney, J.L.,