Anran Xu

Address: 5959 Student Union Blvd, Vancouver, BC V6T1K2 Cell: 437-971-7166 | Email: anranxu@eoas.ubc.ca

EDUCATION University of Toronto	Toronto, Canada
Honours Bachelor of Science	2018.09-2022. 06
Physics Specialist; Mathematics & Its Applications Specialist (Physical Science)	2010.09 2022. 00
 GPA: 3.91/4.0 	
 Dean's List Scholar (Fall/Winter 2019-2020 & 2020-2021) 	
 The Don Salt Memorial Scholarship (Canadian Exploration Geophysical Society (KEGS)) 	
 New College Council In-Course Scholarship 	
 The 3T0 M.&P. and Associates Scholarship 	
The University of British Columbia	Vancouver, Canada
Master of Science in Geophysics	2022.09-presen
RESEARCH EXPERIENCE	2022.09 presen
Visual Sentiment Analysis Using Deep Learning Models	Toronto, Canada
AI4Good Lab	2022.05-2022.07
Reviewed the existing research literature on image sentiment analysis	2022.03-2022.07
Pre-processed the collected data to create a labeled datasetBuilt and optimized a convolutional neural network (CNN) model using transfer lease	ming from DecNet50y2
	anning from Resideu30v2
achieving accuracy of 72% for the training set and 75% for the validation set	Tananta Canad
Development of ML Methods for Neural Cosmological power spectrum emulators	Toronto, Canada
Advisor:Keir Rogers, University of Toronto	2022.05-2022.08
Reviewed literature about Cosmopower and axion dark matter cosmology	90
• Studied background material on cosmology including cosmic microwave background, L	ss matter density, simons
observatory, etc.	
• Used axionCAMB package to collect datasets with different LCDM parameters' space	
• Grasped python packages Cosmopower to train DNN that maps input cosmological parar	
power spectra in an axion dark matter cosmology, achieving error less than 0.06σ for 99%	-
Development of AI Methods for Finding Hidden Dimensions	Toronto, Canada
Advisor: Prof. R. J. Dwayne Miller, Hazem Daoud, University of Toronto	2021.05-2021.08
• Reviewed literature about diffraction pattern analysis using machine learning methods, a	ind explored how A.I. car
aid in matching changes in diffraction pattern to structural changes of bismuth	
• Gained essential knowledge and skills by taking two courses: Deep Learning Special	ulization and TensorFlow
Developer Professional Certificate on Coursera	
• Exported the synthetic profiles of the electron diffraction patterns and converted the	m into ring-like electror
diffraction images using Python	
• Built and optimized a convolutional neural network (CNN) model, achieving accuracy of	93.2% for the training set
and 91.15% for the validation set	
• Used the CNN model to predict the Uiso values of real diffraction patterns, and the predict	-
Moment Tensor Inversion for the Mw=6.5 Earthquake in Nevada	Toronto, Canada
Advisor: Prof. Qinya Liu, University of Toronto	2021.05-2021.07
• Studied background material on seismic wave equation, seismic wave propagation	, and earthquake source
representations (focal ball, moment tensor)	
• Grasped software packages (gCAP & FK package) on seismic data processing and source	mechanism inversions
• Used FK package to calculate the required Green's functions in multi-layered media	
• Performed moment-tensor inversion about the Mw=6.5 earthquake in Nevada in 2020	
result shows that most of segments have correlation coefficients greater than 90 (100 is th	
• Analyzed the result by comparing it to other results from Ruhl (2021) and NSL (Nevada S	Seismological Laboratory)

• Analyzed the result by comparing it to other results from Ruhl (2021) and NSL (Nevada Seismological Laboratory)