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Method of Solution 
The HgM002 20 × 20 harmonic solution for Mercury’s gravity field used 129 daily 

orbital arcs, shown in Fig. S1, derived from X-band Doppler tracking of the 
MESSENGER spacecraft during the period 18 March to 23 August 2011. The solution 
also included X-band Doppler data from the first two MESSENGER flybys (designated 
M1 and M2) of Mercury (6). A total of 1.2 million observations contributed to this 
solution. 

Processing of Deep Space Network (DSN) data from MESSENGER was 
accomplished using the NASA Goddard Space Flight Center (GSFC) Orbit 
Determination and Geodetic Parameter Estimation Program (GEODYN) (30). The 
planetary orientation model (31) incorporated values of Mercury’s physical and rotational 
parameters including the longitudinal librations. When the data were processed in daily 
(24-h) arcs, the typical fit to the Doppler data had residuals of ~0.4 ± 0.2 mm s-1, several 
times the noise level of the DSN data (~0.1 mm s-1).  We excluded tracking observations 
closest to superior conjunction in these solutions. Once normal equations were obtained 
by the GEODYN program, solutions for Mercury’s gravity field were obtained via 
NASA GSFC SOLVE software (32) in a fashion similar to those used for gravity field 
solutions for the Moon (33) and Mars (34).  

In constructing solutions for the gravitational field, the orbit and data modeling 
accounted for solar radiation pressure, planetary radiation pressure induced by the 
reflected solar and thermal radiation from the planet Mercury, third-body gravity 
perturbations from the Sun and other planets, and relativistic corrections including the 
modification of the central body term in the force model and light-time effects in the 
measurement model. A mean planetary albedo of 0.074 and a recent planetary thermal 
model (35) were used. The tracking data were corrected for DSN station coordinate 
effects, including Earth’s polar motion, solid-Earth tides, and ocean loading.  
Meteorological data at the stations were used to correct the radiometric tracking data for 
propagation effects through Earth’s troposphere.  

The modeling included a box-wing representation of the MESSENGER probe that 
approximates the spacecraft as a series of flat plates with specific cross-sectional areas 
and specular and diffuse reflectivities. The plates were oriented in space by means of the 
spacecraft attitude data (quaternions) (36).  

MESSENGER does not have a steerable high-gain antenna (as, for example, on the 
Mars Reconnaissance Orbiter) but relies on six separate antennae mounted on different 
faces of the spacecraft, each with a distinct offset with respect to the center of mass of the 
spacecraft. The processing of the tracking data accounted for the routine switching 
among the different antennae, for which the schedule of use for tracking varies by day 
and mission phase. Each of the offsets of the MESSENGER tracking antennae from the 
spacecraft center of mass was explicitly modeled. 

A spherical harmonic solution for the gravity field was produced from the assembled 
orbital arcs using the NASA/GSFC SOLVE program (32). The gravitational potential, U, 
is represented as a spherical harmonic expansion with normalized coefficients ( Cnm , Snm ), 
expressed after (29) as 
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Given the temporal span of the data and Mercury’s low spin rate, we did not solve for 
the solid-planet tidal Love number but rather used a fixed value (k2 = 0.2). The solid-
planet tide can alias into our recovery of the gravitational flattening, C20, but that 
contribution is expected to be very small (~0.001 C20), which we confirmed by obtaining 
an alternative solution with a different a priori value of k2 (= 0.6).  

The MESSENGER navigation team conducted an independent analysis and produced 
an independent solution for Mercury’s gravity field using MESSENGER orbital tracking 
data through 5 October 2011. The Doppler observations were processed using the Jet 
Propulsion Laboratory MIRAGE software, and the solution agrees closely with HgM002 
with respect to the values of the degree-2 terms and the pattern of gravity anomalies in 
the northern hemisphere. 

 
Analysis of the Gravitational Field 

The power in the gravitational field, expressed as root mean squared (RMS) power, is 
given in Fig. S2. To limit the power of the high-degree coefficients because of noise in 
areas that lack low-altitude coverage, a Kaula power-law constraint (29) was applied to 
coefficients for spherical harmonic degrees greater than l = 2. That constraint (4 ×10-5/l2) 
was derived from scaling of gravitational power for the Moon (cf. Fig. S2).  Gravity 
anomaly errors are given in Fig. S3, which shows that projected errors derived from the 
covariance of the 20×20 solution are below 20 mGal north of 30°N. Correlations 
between low-degree coefficients are shown in Fig. S4. The correlation matrix indicates 
that zonal coefficients exhibit higher intra-order correlations than tesseral or sectoral 
coefficients, with the highest correlation between C20 and C30. The first two 
MESSENGER flybys of Mercury were valuable in constraining GM, the product of the 
gravitational constant G and Mercury’s mass M, and reducing its correlation with C20.  

To better understand the error characteristics of the low-degree field, the HgM002 
covariance matrix was used to generate clone models and to analyze the distribution of 
spherical harmonic coefficients. To generate a clone gravity model, the covariance matrix 
was diagonalized. Subsequently, each eigenvector was multiplied by ±1 times the square 
root of its eigenvalue in a random fashion, and the difference coefficients of the field 
were generated. More than 50000 clone models were evaluated (cf. Fig. S5).   

Relations between perturbed and non-perturbed values of the C20 and C22 coefficients 
are plotted in Fig. S6. We processed the MESSENGER Doppler data from 19 March to 5 
June 2011 simultaneously with approximately 2700 altimeter crossovers derived from 
MESSENGER’s Mercury Laser Altimeter (MLA) (3).  The RMS fit to the altimeter 
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crossovers (which were not included in the orbit solution) with HgM002 is about 80 m. 
Fig. S6 shows that if the C20 and C22 values are perturbed by ±10 percent, the altimeter 
crossover RMS fit degrades to 180–230 m. This test provides a strong validation of the 
values for C20 and C22 obtained with the HgM002 solution. 

 
Gravity Modeling 

We generated model gravity predictions to compare with the HgM002 solution by 
calculating the “degree of compensation” (37), a calculation that employs a spherical 
harmonic formalism to describe the flexural and membrane response to a surface load 
(e.g., shape) for which some level of compensation takes place at the crust-mantle 
boundary.  The degree of compensation was folded into the isostatic response function, 
which maps shapes of the surface and crust-mantle boundaries into the model gravity 
predications.  Parameters in the model are the Young’s modulus (100 GPa) and Poisson’s 
ratio (0.25) of the elastic lithosphere, crustal density (3100 kg m-3), mantle density (3300 
kg m-3), reference crustal thickness (hc, variable), and thickness of the elastic lithosphere 
(Te, variable).  The hc-Te parameter space was searched for model gravity solutions that 
best fit the HgM002 gravity solution in the vicinity of Mercury’s northern rise.  Best-
fitting solutions (Fig. S7) had fit standard deviations of 7 mGal (cf. the peak gravity 
anomaly for the northern rise is ~150 mGal), and the variance of the northern-rise gravity 
anomaly was reduced 99.7% by the models. The 70-90 km range found for Te will lead to 
a small curvature of the load-induced deflection, so the thickness of the mechanical 
lithosphere (the outermost shell of the planet displaying long-term strength) will be 
approximately that of the elastic lithosphere. 
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FIGURES 
 
 

 
 
Figure S1.  Distribution of Doppler tracking data acquired when the MESSENGER spacecraft 
was within 1500-km altitude of the surface of Mercury (cylindrical projection).  Color coding 
indicates spacecraft altitude. 
 
 
 

 
 
Figure S2. RMS power for solution HgM002. Variances for earlier solution HgM001 (6) are also 
shown, as are the adopted Kaula constraint (29) and the errors in solution HgM002 by harmonic 
degree. 
 



 7

 
 
 

 
 
Figure S3. Cylindrical projection of gravity anomaly errors for solution HgM002. 
 
 
 

 
 
Figure S4.  Correlation matrix for GM and the low-degree harmonic coefficients in the HgM002 
solution. 
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Figure S5.  Distribution of selected coefficient values from the analysis of clone models. 
 
 

 
 
Figure S6. Validation of recovery of C20 (left) and C22 (right) from Doppler (top) and altimeter 
crossover (bottom) data in an arc using data between 9 March and 5 June 2011.  The best-fit 
value for each coefficient, with corresponding minimum RMS residual, represents the zero-
percent perturbation point along each abscissa.  Perturbing the solution in either direction 
increases the RMS residual. The Doppler X-band residuals are expressed in Hz, and the 
altimeter crossover residuals are expressed in m. 
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Figure S7.  Standard deviation (σ ) of the residuals from fits of the model gravity to HgM002 
gravity in the vicinity of Mercury’s northern rise. Results are shown for three different values of 
crustal thickness (hc). The best fitting elastic lithosphere thicknesses are relatively insensitive to 
crustal thickness values. 
 
 




