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Abstract. We consider the flow of marine-terminating out-
let glaciers that are laterally confined in a channel of pre-
scribed width. In that case, the drag exerted by the channel
side walls on a floating ice shelf can reduce extensional stress
at the grounding line. If ice flux through the grounding line
increases with both ice thickness and extensional stress, then
a longer shelf can reduce ice flux by decreasing extensional
stress. Consequently, calving has an effect on flux through
the grounding line by regulating the length of the shelf. In the
absence of a shelf, it plays a similar role by controlling the
above-flotation height of the calving cliff. Using two calv-
ing laws, one due to Nick et al. (2010) based on a model
for crevasse propagation due to hydrofracture and the other
simply asserting that calving occurs where the glacier ice be-
comes afloat, we pose and analyse a flowline model for a
marine-terminating glacier by two methods: direct numer-
ical solution and matched asymptotic expansions. The lat-
ter leads to a boundary layer formulation that predicts flux
through the grounding line as a function of depth to bedrock,
channel width, basal drag coefficient, and a calving parame-
ter. By contrast with unbuttressed marine ice sheets, we find
that flux can decrease with increasing depth to bedrock at
the grounding line, reversing the usual stability criterion for
steady grounding line location. Stable steady states can then
have grounding lines located on retrograde slopes. We show
how this anomalous behaviour relates to the strength of lat-
eral versus basal drag on the grounded portion of the glacier
and to the specifics of the calving law used.

1 Introduction

In the theory of laterally unconfined marine ice sheet flow,
a standard result is that flux through the grounding line is
an increasing function of bedrock depth (Weertman, 1974;
Thomas and Bentley, 1978; Schoof, 2007a). This leads to the
conclusion that grounding lines can have stable steady states
only when the ice sheet bed has sufficiently steep down-
flow slope (Fowler, 2011; Schoof, 2012): a slight advance in
grounding line position into deeper water leads to an increase
in flux through the grounding line, causing the ice sheet to
retreat back to its original position. Analogously, a slight re-
treat leads to a reduction in flux through the grounding line
and a re-advance of the ice sheet.

There are a number of mechanisms that can alter the flux-
to-bedrock-depth relationship. These include the appearance
of “hoop stresses” in an ice shelf fringing the ice sheet (see
Pegler and Worster, 2012, and Pegler, 2016, though these
may require unrealistically large ice shelves), the fact that
bedrock elevation can actually change due to loading and un-
loading of the lithosphere (Gomez et al., 2010), thermome-
chanically mediated changes in basal friction (Robel et al.,
2014, 2016) and lateral drag due to geometrical confinement
of the flow into a channel (Dupont and Alley, 2005; Jamieson
et al., 2012). The last of these is probably the most significant
mechanism; when ice flows through a channel, drag can be
generated by the side walls of the channel. Drag at the chan-
nel side walls of the floating ice shelf reduces the extensional
stress acting at the grounding line and, therefore, reduces the
grounding line flux.

Goldberg et al. (2009) and Gudmundsson et al. (2012)
demonstrate that sidewall drag can lead to the formation of
stable steady states with grounding lines on upward-sloping
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(or “retrograde”) beds. Both papers have channels of uniform
width and fix the edge of the ice shelf, which suggests the
following physics: for a steady-state grounding line on an
upward-sloping bed, a slight retreat in grounding line posi-
tion will cause an increase in ice thickness at the grounding
line. In isolation, this would lead to increased discharge and
continued ice sheet retreat. However, the retreat in ground-
ing line position also leads to a longer shelf, which therefore
experiences more lateral drag and reduces extensional stress
at the grounding line. This process is known as “buttress-
ing” and, by itself, would lead to reduced discharge and a
re-advance of the ice sheet. Which of the two mechanisms
dominates presumably depends on the specifics of the chan-
nel and the fixed shelf front position.

An open question is whether an evolving calving front can
lead to a similar stabilization, as we are no longer guaranteed
that a retreat in the grounding line position leads to the same
increase in shelf length and, therefore, to the same increase in
lateral drag. To answer that question conclusively, we would
need a universal “calving law” that can robustly predict the
location of the calving front. Such a calving law is currently
not available.

We investigate how two particular calving laws that are
relatively widely used in models for tidewater glaciers af-
fect buttressing in a simplified flowline model. The ice
flow model itself lacks the sophistication of models that re-
solve the cross-channel dimension. Instead, it relies on a pa-
rameterization of lateral drag in terms of the mean along-
channel velocity (Dupont and Alley, 2005; Nick et al., 2010;
Jamieson et al., 2012; Hindmarsh, 2012; Pegler et al., 2013;
Robel et al., 2014, 2016; Pegler, 2016). The chief advantages
of the model are that it allows flux through the grounding
line to be computed rapidly as a function of ice thickness
through the use of a boundary layer theory (Schoof, 2007a)
and that the role of different physical mechanisms becomes
comparatively easy to trace. Future work will be required
to address whether our results are reproduced qualitatively
by more sophisticated (and more computationally intensive)
models, and we hope that this paper can motivate such work.

The rationale for the calving models used here is described
in greater detail in Sect. 2.2. One calving law simply states
that calving occurs at the local flotation thickness at the
grounding line. The calving front is at flotation when calv-
ing occurs but no floating ice shelf ever forms. We use this
calving law as a simple reference case that should give re-
sults analogous to previous work on unconfined marine ice
sheet flow (Schoof, 2007a), where the formation of a float-
ing shelf has no effect on flux through the grounding line.
The other calving law that we investigate is the “CD” calving
law due to Nick et al. (2010). Simulations of outlet glaciers
in Greenland with this calving law have predicted stabiliza-
tion of grounding lines on areas of upward-sloping bed (Nick
et al., 2013), suggesting that it may indeed predict a relation-
ship between flux and bedrock depth that differs from theo-
ries for unconfined marine ice sheet flow. We do, however,

stress that our aim is not an exhaustive survey of all calving
models. We anticipate that the analysis presented below can
be applied to other calving models, but doing so is beyond
the scope of our paper.

2 Model

2.1 Ice flow

We consider a flowline model for a rapidly sliding, channel-
ized outlet glacier with a parameterized representation of lat-
eral drag. The model has the same essential ingredients as
those in Dupont and Alley (2005), Jamieson et al. (2012),
Nick et al. (2010), Hindmarsh (2012), Pegler et al. (2013)
and Pegler (2016). Figure 1 shows the physical domain. Mass
accumulates over the glacier and is advected seaward by ice
flow. Mass is ultimately lost by flow across the grounding
line and eventual calving of icebergs. Our notation is sum-
marized in a table given in the Supplement: let x be the
along-flow coordinate and t time, while u(x, t) and h(x, t)
are width-averaged ice velocity and thickness, respectively.
If b(x) is bed elevation and w(x) the width of the outlet
channel, each assumed constant in time, then we model force
balance and mass conservation as

2(Bh|ux |1/n−1ux)x −B
′
w−1/n−1h|u|1/n−1u− θC|u|m−1u

− ρig (1− (1− θ)ρi/ρw)h(hx + θbx)= 0 (1a)
wht + (wuh)x = w(a− (1− θ)µ) (1b)

for 0< x < xc(t), where subscripts x and t denote partial
derivatives. Here, ρi and ρw are the densities of ice and wa-
ter, respectively, and g is acceleration due to gravity, while a
is surface mass balance and µ is the melt rate at the base of
the floating ice. The indicator function θ is given by

θ(x)=

{
1 if ρih(x)≥−ρwb(x),

0 otherwise; (1c)

in other words, θ = 1 if and only if the ice thickness is above
flotation and the glacier is grounded.

Note that we have included the melt rate µ in Eq. (1)
for completeness only. While the numerical code included
with the Supplement permits computations of steady-state
solutions in Sect. 3.2 and of the boundary layer problem
described in Sect. 4.2 with a non-zero basal melt rate un-
der floating ice, a full exploration of the extended parameter
space would make this paper unmanageable. In what follows,
we set µ= 0 throughout, and we will address the effect of in-
corporating non-zero µ in a separate paper.

The parameters B and n are the usual parameters in the
Glen’s law rheology for ice (Paterson, 1994). We neglect any
complications associated with the dependence of ice viscos-
ity on temperature or moisture content and treat B as well as
n as constant. C is a drag coefficient in a power-law basal
friction law, with m being the corresponding exponent (e.g.
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Budd et al., 1979; Fowler, 1981); on theoretical grounds, it
is often assumed that m= 1/n. Note that other friction laws
have also been considered in boundary layer models for un-
confined ice sheets (Tsai et al., 2015). The basal drag term
only applies where ice is grounded, corresponding to θ = 1.
For simplicity, we neglect the possibility that C may depend
on additional degrees of freedom such as basal water pres-
sure or temperature.

The second term B
′
w−1/n−1h|u|1/n−1u is a parameteriza-

tion of lateral drag, with B
′

being another constant. We as-
sume that lateral drag is exerted on both grounded and float-
ing ice. A more sophisticated treatment of lateral drag would
require a domain with two horizontal dimensions and an ad-
ditional equation representing force balance in the direction
perpendicular to the channel axis (e.g. Wearing et al., 2015).

It is worth noting however that Eq. (1a) becomes accurate
in one of two mutually incompatible limits: (i) a wide chan-
nel where lateral drag vanishes (this is the one-dimensional
flow case previously studied in e.g. Schoof, 2007a) or (ii) a
long and narrow glacier where extensional stress is insignif-
icant and there is no significant flow transverse to the chan-
nel axis. By “extensional stress”, we mean the non-cryostatic
part of normal stress on a vertical surface placed across the
flow, that is, 2B|ux |1/n−1ux . In the narrow-channel case, as-
suming no slip at the channel side walls, Eq. (1) predicts the
correct width-averaged velocity if we put (see also, e.g., Ray-
mond (1996) for details on flows dominated by lateral shear)

B
′
= (n+ 2)1/n2(n+1)/nB; (1d)

smaller values of B
′

can be justified if there is actual slid-
ing at the lateral margins of the ice. We use Eq. (1a) even
when neither of the two limits above apply. As discussed in
Pegler (2016), this is a simplification that works reasonably
well and allows at least semi-analytical progress to be made.
The simplicity of the model has also led to a large number
of authors adopting versions of it. We proceed in that spirit,
analysing the model at face value.

We denote the glacier terminus by xc(t); this is the loca-
tion where ice cover ends. Since xc is a free boundary, two
boundary conditions are required. One is needed to close the
elliptic problem Eq. (1a) and another to determine the evolu-
tion of xc. The former is a condition on extensional stress at
the ice front (e.g. Schoof, 2007b, Appendix B):

2Bh|ux |1/n−1ux = ρi (1− (1− θ)ρi/ρw)h
2/2− θρwgb

2/2
at x = xc(t). (1e)

We take the second condition to be a calving law. While a
stress condition is sufficient to close the force balance model
Eq. (1a), a calving model can be understood as fixing the
free-boundary location. The next section describes the dif-
ferent choices of calving laws used here.

Bed

Ice Air

Ocean

Figure 1. Schematic of the model domain and variables used. Not
shown is the lateral dimension: the glacier occupies a channel of
width w, potentially variable along the glacier flowline. The upper
ice surface shown is at an elevation s = (1− (1− θ)ρi/ρw)h+ θb,
and the lower surface at l = s−h. The lower two diagrams are en-
largements of the vicinity of a grounded terminus (left) and a float-
ing terminus (right), illustrating the meaning of calving front posi-
tion xc, grounding line position xg, calving front height hc, ground-
ing line thickness hg and flotation thickness hf. The dashed line
indicates where the upper ice surface would need to be at a given
position x in order for the ice to be just about to float.

2.2 Calving model

The process of calving remains relatively poorly understood,
but several calving laws have been developed on theoreti-
cal grounds. Our aim is to illustrate how different calving
laws can lead to qualitatively, rather than quantitatively, dif-
ferent dynamics in the outlet glacier. We consider two pos-
sible calving laws. The first is the CD model due to Nick
et al. (2010), and the second is a calving law that states that
ice breaks off when the glacier reaches its flotation thickness.
To streamline our notation, we refer to the latter as the “FL”
calving law.

The CD model works based on the assumption that wa-
ter in surface crevasses affects the depth to which those
crevasses can penetrate. When they penetrate deeply enough
to connect with basal crevasses, calving occurs. When they
do not, there is no calving and the ice front simply moves at
the velocity of the ice. Algebraic manipulation of the Nick
et al. (2010) CD model shows that connections with basal
crevasses occur instantly in the model when ice thickness is
at (or below) a value hc. In other words, the evolution of the
calving front xc satisfies

either h= hc at x = xc if ẋc ≤ u(xc) (1f)
or ẋc = u at x = xc if h > hc, (1g)

where the dot indicates differentiation with respect to time.
Note that the domain lies to the left of xc, so ẋc < u implies
that ice is removed by calving. hc itself can be written as a
function of the crevasse water depth dw and of local bedrock
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Figure 2. Calving laws. In all three panels, a solid line refers to the CD calving law, and a dashed line to the FL law. The grey shaded region
refers to parts of parameter space where the calving front is grounded for the CD law, and white background to a floating calving front.
r = 0.9 throughout. (a) The calving-front-thickness-to-bedrock-depth ratio φ as a function of normalized water depth −dw/b. For the FL
law, the ratio is simply r−1. (b) Normalized calving front thickness hc/dw as a function of normalized flotation thickness hf/dw =−b/(rdw)
at the grounding line. (c) Normalized grounding line thickness hg/dw as a function of normalized flotation thickness hf/dw.

depth −b. This function can be expressed as

hc =−bφ (−dw/b), (1h)
where φ(−dw/b)={

2(ρw/ρi)(−dw/b) when − dw/b < 1/2,
ν+

√
ν2− (ρw/ρi) when − dw/b ≥ 1/2,

(1i)

and ν is

ν = 1+
[
(ρw/ρi)− 1

]
(−dw/b).

The function φ is the ratio of calving front thickness to depth
to bedrock; the form of φ is illustrated in Fig. 2a.

As an alternative to the CD model, in which the function φ
is defined through Eq. (1i), we consider the FL law, in which
the glacier calves “at flotation”. This means that calving oc-
curs when h=−(ρw/ρi)b at the calving front but not when
h is larger. This is easy to incorporate into the calving frame-
work Eqs. (1f)–(1h) above: we simply have to replace the
definition of φ in Eq. (1i) with the simpler

φ = ρw/ρi. (1j)

This condition is effectively what applies in previous work
on marine ice sheet flow without sidewall drag as considered
in, e.g., Schoof (2007a).

Note that Nick et al. (2010) do not formulate their calv-
ing law directly in the form Eqs. (1f)–(1i); a derivation
of the thickness condition Eq. (1f) based on their formu-
lation is given in the Supplement. There are two cases in
Eq. (1i): −dw/b < 1/2 corresponds to a floating terminus,
and −dw/b ≥ 1/2 to a grounded terminus. Note that φ and
hc are continuous (in fact, continuously differentiable, as
shown in Fig. 2) at−dw/b = 1/2, where calving occurs at the
critical floatation thickness hc = (ρw/ρi)b. Once the calving
front is afloat, hc no longer depends on bedrock depth: when
−dw/b < 1/2, we simply have hc = 2(ρw/ρi)dw. In other
words, for a fixed water depth parameter dw and sufficiently
large bedrock depths the Nick et al. (2010) CD model is ac-
tually a calving law that simply states that ice breaks off a

floating glacier shelf at a critical thickness that is determined
purely by the parameter dw (Fig. 2b).

To complete the notation for our model, we also define the
grounding line position x = xg. For a glacier with a floating
shelf, this is the point x = xg(t) at which θ changes discon-
tinuously:

h(xg(t), t)=−(ρi/ρw)b(xg(t)). (1k)

For the FL calving law, there is no floating shelf; the ground-
ing line and calving front coincide. The CD calving model
goes further, permitting cases where there is no floating ice
shelf and the flotation condition h=−(ρi/ρw)b is attained
nowhere along the glacier, including at the calving front. To
keep our terminology as simple as possible, we identify the
grounding line in that case with the terminus location:

xg = xc. (1l)

For later convenience, we also define the ice thickness hg
at the grounding line and the flotation thickness hf at the
grounding line through

hg = h(xg(t), t), hf =−(ρi/ρw)b(xg(t)). (1m)

For glaciers with a floating shelf, we always have hg = hf; for
that reason, existing theories for marine ice sheets generally
do not make a distinction between hg and hf (e.g. Schoof,
2007a). The distinction becomes relevant when there is no
floating ice shelf, in which case we only have hg ≥ hf. We
will use hf frequently below, as it is a simple function of
bedrock depth at the grounding line and therefore determined
purely by the geometry of the glacier channel. hg additionally
depends on the calving process as shown in Fig. 2c.

In our view, the CD model is a cartoon version of the linear
elastic fracture mechanics explored in by Weertman (1973,
1980) and van der Veen (1998a, b). These papers consider the
“mode 1” (Zehnder, 2012) propagation of vertical cracks into
ice under tensile (extensional) stresses. This is done by com-
puting stress intensity factors at the crack tips from known
Green’s functions for parallel-sided elastic slabs with cracks
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penetrating from the upper or lower surfaces, accounting for
the pressure exerted by water in the cracks, and applying
a fracture toughness criterion. The CD model by contrast
assumes that extensional stress increases with depth in the
ice in a linear, cryostatic fashion. The model then computes
crevasse penetration as being the distance from the upper and
lower surfaces at which that extensional stress becomes suf-
ficiently negative (that is, sufficiently compressive) to over-
come the pressure exerted by water at the same depth. The
CD model therefore does not compute stress with the same
level of sophistication as the papers by Weertman (1973,
1980) and van der Veen (1998a, b) but follows the same ba-
sic approach of computing crevasse propagation based on a
known ice geometry, extensional stress and crevasse water
pressure, and it has the advantage of tractability.

The basic method in van der Veen (1998a, b) in princi-
ple allows for a constraint to be computed that links ice
thickness, applied extensional stress, crevasse water level
and fracture toughness at the moment that surface and basal
crevasses together first penetrate through the entire ice thick-
ness. Given that extensional stress is a function of ice thick-
ness through Eq. (1e), this constraint could be converted into
a criterion for the thickness hc at which calving occurs, giv-
ing a more sophisticated version of the Nick et al. (2010)
CD model. However, the papers by van der Veen do not deal
with the case in which both surface and basal crevasses are
present and interact with each other (so the relevant Green’s
functions are not given), and he does not explicitly compute
a condition for calving that could be put in the form Eq. (1f).
As a result, we confine ourselves to the simpler CD model
here.

Note that there is one inconsistency in the calving law at
small −b/dw: here the CD law predicts values of hc < dw
(see Fig. 2b). Obviously, this implies a greater water level in
surface crevasses than the ice thickness, which is physically
impossible. We are led to conclude that, for small enough
−b/dw (which will later correspond to small enough val-
ues of the parameter 3, defined in Sect. 4.2), the calving
model continues to lead to computable results but breaks
down physically. Note that having a flotation height (equal to
−ρwb/ρi) that is smaller than dw is not problematic: the calv-
ing front thickness can be greater than the flotation height and
therefore allow for such large water depths.

A second practical pitfall of the CD model is that it pre-
dicts no calving at all if dw = 0 and surface crevasses are free
of water. It is possible that this is an artefact of the simple
representation of stress in the CD model, where the tensile
stress driving crevasse propagation is assumed to have the
same dependence on depth below the ice surface regardless
of whether a crevasse is present or not. In reality, the forma-
tion of crevasses that penetrate through a significant fraction
of the ice shelf leads to extensional stress becoming more
concentrated around the crack tips than for shallow crevasses
(see for instance Fig. 4 of van der Veen, 1998a). This repre-
sents a positive feedback on crack propagation and could lead

to calving even for the case of water-free surface crevasses
(see also Weertman, 1980). In addition, the stress fields con-
sidered by Weertman (1973, 1980), van der Veen (1998a, b)
and Nick et al. (2010) are relatively simple and apply only
at distances significantly greater than a single ice thickness
from the calving front. In the calving of shorter, taller ice-
bergs, torques near the calving front (Hanson and Hooke,
2000; Ma et al., 2017) may allow calving when purely ex-
tensional stresses experienced further upstream do not.

More recently, others have extended the linear elastic frac-
ture mechanics approach of Weertman (1973, 1980) and
van der Veen (1998a, b) to include effects such as the role
of distributed damage due to the formation of microcracks
in initiating crevasse formation, the blunting of cracked tips
due to viscous deformation and the presence of significant
torques near the calving front (Krug et al., 2014; Mobasher
et al., 2016; Jiménez et al., 2017; Yu et al., 2017). The com-
plexity of these processes however makes them difficult to
parameterize in a model that does not resolve the scale of
individual crevasses, and we do not consider them here.

The Nick et al. (2010) CD calving model, along with the
work of Weertman (1973, 1980) and van der Veen (1998a, b),
is based on tensile failure. We can contrast this with the shear
failure model of Bassis and Walker (2011) (see also Bassis
and Jacobs, 2013, and Ma et al., 2017). The CD model re-
quires dw > 0 and predicts calving for any h below the value
given by Eq. (1f), instantaneously removing all parts of the
glacier shelf that are too thin. By contrast, the shear failure
model of Bassis and Walker (2011) predicts that calving will
start at a critical calving front thickness and not occur be-
low that thickness, so the inequality in Eq. (1g) would need
to be reversed. It also predicts that, once initiated, the calv-
ing front will continue to fracture as it moves into thicker ice
inland. This is the basis of the catastrophic calving cliff insta-
bility mechanism for marine ice sheet collapse advocated by
Pollard et al. (2015) but cannot be captured by an analogue
of Eq. (1f). It is clear that ice sheets whose calving cliff is
larger than the critical thickness for shear failure simply can-
not persist: they are guaranteed to disintegrate completely or
to stabilize in some shape where the calving front thickness
is below the critical thickness for shear failure, and the shear
failure model by itself does not provide a timescale for that
disintegration. We exclude such shear failure from consider-
ation here and focus purely on the CD calving model.

Even when taking the Nick et al. (2010) CD model at face
value, as we do here, the sensitivity to the parameter dw re-
mains problematic. In fact, one of our results below will be
that flux through the grounding line is more sensitive to dw
than to any other model parameter. At present, we do not
have a surface hydrology model that can predict dw. It is
plausible that a future hydrology model could compute a wa-
ter table height near the calving cliff (ds−dw if measured rel-
ative to the local ice surface, where ds is the depth of surface
crevasses as discussed in the Supplement) rather than using
dw itself. Such a model would likely be based on drainage be-
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ing driven by gradients in hydraulic head, but this awaits fu-
ture development. We persist with the basic Nick et al. (2010)
model, treating dw as given.

3 Solution of the model

3.1 Non-dimensionalization

In the remainder of this paper, we will consider the prob-
lem Eq. (1) in dimensionless form. The purpose of doing so
is two-fold. Non-dimensionalization (i) reduces the number
of free parameters and (ii) allows systematic approximations
based on the relatively small size of some dimensionless pa-
rameters. We assume that we know scales [a] for accumu-
lation rate and [x] and [w] for glacier length and width, re-
spectively. We choose scales [u], [h] and [t] based on the
balances

B
′
[w]−1/n

[h][u]1/n = ρig[h]
2/[x],

[u][h] = [a][x], [u][t] = [x].

We define dimensionless variables as u= [u]u∗, h= [h]h∗,
x = [x]x∗, t = [t]t∗ and xc = [x]x

∗
c , and we also put

ε =
B[w]1/n+1

2B
′
[x]1/n+1

, γ =
C[w]1/n+1

[u]m−1/n

B ′[h]
,

λ=
dw

[h]
, r =

ρi

ρw
, (2)

a∗ =
a

[a]
, w∗ =

w

[w]
, b∗ =

b

[h]
. (3)

Dropping asterisks on the dimensionless variables immedi-
ately, we obtain

4ε(h|ux |1/n−1ux)x −w
−1/n−1h|u|1/n−1u− γ θ |u|m−1u

− (1− r + θr)h(hx + θbx)= 0, (4a)
wht + (wuh)x = wa (4b)

for 0< x < xc(t), with θ being the indicator function for
flotation

θ = 1 if rh≥−b, θ = 0 otherwise (4c)

and the boundary conditions at the terminus being

4εh|ux |1/n−1ux = (1− r)h2/2+ θ
(
r2h2
− b2

)
/(2r)

at x = xc(t), (4d)

and either

h=−bφ(−λb−1) at x = xc if ẋc ≤ u(xc) (4e)
or ẋc = u at x = xc if h >−bφ (−dw/b), (4f)

with φ given by Eq. (1i) for the CD calving model, or by
Eq. (1j) (which states that φ ≡ r−1) for the FL calving law.

3.2 Direct numerical solution

The system Eq. (4) can be solved numerically as posed. In
this paper, we focus on solutions of the steady-state ver-
sion of the problem by a shooting method, which provides a
straightforward alternative to a solution by more established
time-stepping methods. As our method has not been used
previously in this context, we sketch it here for complete-
ness; results are presented at the end of this section and in
Figs. 3 and 4.

We can write the steady-state problem as a four-
dimensional, first-order autonomous system of differential
equations if, in addition to h, we define the phase space vari-
ables q, σ and χ through

q = uhw, σ = |ux |
1/n−1ux, χ = x. (5)

For technical reasons associated with singular behaviour of
the steady-state problem near ice divides, we also define a
new independent variable η through

xη = q

to obtain a first-order system of differential equations from
Eq. (4):

hη =−h
2w(χ)|σ |n−1σ +hw(χ)a(χ)

−hqw′(χ)w(χ)−1, (6a)

ση = (4ε)−1h−1/n
|q|1/n+1w(χ)−2/n−2

+ γ θh−m−1
|q|m+1w(χ)−m

+ (4ε)−1 [1− (1− θ)r]
[
−h2w(χ)|σ |n−1σ

+hw(χ)a(χ)−hqw′(χ)w(χ)−1
]

− (4ε)−1θqb′(χ)+h|σ |n+1w(χ)− σw(χ)a(χ)

+ σw′(χ)w(χ)−1, (6b)
qη = qaw(χ), (6c)
χη = q, (6d)

with θ(h,χ)= 1 if h >−b(χ)/r and θ = 0 otherwise; here
a, w and b are treated as prescribed functions, and the prime
simply indicates their first derivative.

We assume there is an ice divide at x = 0, where u=
q = 0. Technically, the ice divide then becomes a fixed
point of the system Eq. (6) approached as η→−∞, at
which (h,σ,q,χ)= (h0, [a(0)/h0]

1/n,0,0) with the ice di-
vide thickness h0 > 0 not known a priori. The trick is to de-
termine the value of h0 for which the boundary conditions
at the glacier terminus are satisfied by means of a shoot-
ing method. Given h0, the fixed point has a unique orbit that
emerges from it. In other words, if h0 is known, then the so-
lution to Eq. (6) can be computed uniquely. A constraint on
h0 therefore arises from imposing the boundary conditions at
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Figure 3. Steady-state profiles, with w ≡ 1, n= 1/m= 3, r = 0.9,
γ = 0, ε = 0.01, λ= 7.0304rεn

2/(n+1)2 , b(x)= εn
2/(n+1)(1−

2x2). The apparently contrived form in which λ and b are written
is designed to make comparison with Sect. 4.2 simpler, whereby
the corresponding variables 3 and B are then easy to extract.
Panel (e) shows grounding line positions xg against surface accumu-
lation rate a for the CD calving model (solid line, grounded where
the background is shaded grey) and FL calving law (dashed line).
(a–d) Steady-state profiles, same colour scheme as in Fig. 1, same
horizontal axis as in (e). (a) The FL calving law, a = 2.08. (b–d) CD
calving law with a = 0.134 (b), 4.18 (c), 3.54 (d). Red diamonds
in (e) refer to the steady state in the panel indicated by the letter
label.

the glacier terminus, which are of the form

4εhσ = (1− r)h2/2+ θ
(
r2h2
− b(χ)2

)
/(2r),

h=−bφ(−λb(χ)−1) (6e)

at some finite η = ηc. Equation (6e) is dealt with simply by
integrating along the orbit until the first condition is satisfied.
The second then acts as a single constraint on the degree of
freedom h0 that uniquely determines the solution. The code
used to compute solutions here is included in the Supple-
ment.

Figure 3 shows a synthetic example, not based on trying
to emulate any specific glacier geometry. Parameter values

10
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Figure 4. Steady-state profiles, with w ≡ 1, n= 1/m= 3, r =
0.9, γ = 0, ε = 0.001, b(x)= εn

2/(n+1)(9.4665− 28.3710x2
+

13.3975x4
− 1.97021x6). Panel (b) shows the geometry of the

bed, which is a scaled version of the sixth-order polynomial
bed shape used in Schoof (2007b). Panel (a) shows ground-
ing line positions xg against surface accumulation rate a (note
the logarithmic scale) for the FL model (dashed line) and the
CD calving model (solid line, shown in black where the calv-
ing front is grounded, and blue where it is afloat) at values
of λ= 4.7486rεn

2/(n+1)2 , 5.5122rεn
2/(n+1)2 , 6.2758rεn

2/(n+1)2 ,
7.0304rεn

2/(n+1)2 , 7.8030rεn
2/(n+1)2 and 8.5666rεn

2/(n+1)2 . To
identify the curves, note that, for a given grounding line position,
larger values of λ invariably correspond to larger values of a.

are given in the figure caption: here, we hold constant the
bed and channel geometries; material properties such as m,
n and r; and the calving parameter λ fixed and vary accumu-
lation rate a. Importantly, the bed slopes downward mono-
tonically in x. For “unbuttressed” glaciers subject to basal
but not lateral drag (e.g. Schoof, 2007b), this would lead to
steady-state grounding line position xg increasing monoton-
ically with accumulation rate a: increased accumulation in-
land must be balanced by increased discharge of ice across
the grounding line, which happens for unbuttressed glaciers
when the grounding line moves into deeper water. The most
notable feature in panel (b) is that this behaviour persists if
we use the FL model (dashed line). For the Nick et al. (2010)
CD model, we see a partial reversal of this behaviour: for ac-
cumulation rates larger than a certain value, there appear to
be no steady-state solutions at all. For smaller accumulation
rates, there are two steady-state solutions: (i) a large ice sheet
for which xg shrinks as a increases and (ii) a small ice sheet
for which xg increases with a. The larger solution branch
also contradicts existing understanding of marine ice sheet
dynamics, precisely because an increase in surface mass bal-
ance causes the grounding line to retreat into shallower wa-
ter. Such steady states are likely to be unstable (see Schoof,
2012, and Sect. 6 below)

Figure 4 shows analogous calculations to Fig. 3 but for
an overdeepened bed shape based on that used in Schoof
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(2007b). For the FL model, we invariably see that an increase
in accumulation rate makes the grounding line advance on a
downward slope and retreat on a retrograde slope. This is
again analogous to the unbuttressed case studied in Schoof
(2007b), where the grounding line is then unstable when lo-
cated on an upward slope. For the CD model, the behaviour
becomes more complicated. We see that the grounding line
can either advance or retreat with increasing accumulation
rate, on both the downward- and upward-sloping parts of
the bed. Qualitatively, shallow water depths at the ground-
ing line are more commonly associated with the standard,
“unbuttressed” behaviour (that is, an increase in accumula-
tion tends to cause the grounding line to advance on down-
ward slopes and retreat on retrograde slopes). The reverse
behaviour is typically associated with larger water depths at
the grounding line. We also see that a decrease in λ leads to
the “reverse” behaviour being observed down to shallower
water depths at the grounding line and, in particular, through
more of the overdeepened section. Note also that the solid
(CD model) solution curves in Fig. 3 end at finite values of a
at xg = 0.6386, the location where water depth goes to zero:
as shown in Fig. 2b, an oddity of the CD model is that it pre-
dicts a non-zero calving front thickness even when the wa-
ter depth is zero, and hence there is a non-zero calving flux
even where the “grounding line” is on dry land; we have only
computed solutions where the grounding line remains in the
water.

Our aim in what follows is to explain the results in Figs. 3–
4 using the same boundary layer approach as in Schoof
(2007a). In particular, we will show that flux through the
grounding line can be computed to leading order in the pa-
rameter ε as a function of depth to bedrock and channel width
at the grounding line, as well as of the calving parameter λ,
friction coefficient γ and the remaining physical parameters
(r , m, n). Given such a relationship, it is then possible to
determine how the grounding line location in a steady state
depends on accumulation rates, purely by balancing net ac-
cumulation over the domain with outflow of ice through the
grounding line.

4 Approximation: a small lateral aspect ratio

4.1 A local-force-balance version of the model

If we take ε as defined in Eq. (2) with B
′

given by Eq. (1d),
we have

ε = (n+ 2)1/n21/n
(
[w]

[x]

)(n+1)/n

.

In other words, ε is a measure of the lateral aspect ratio
[w]/[x]. A narrow channel ensures that ε is small, which is
the basis for our approximation scheme. With ε small, we can
neglect gradients of the depth-integrated extensional stress in
Eq. (4a) (that is, gradients of 4h|ux |1/n−1ux) everywhere ex-

cept close to the terminus, and we find

−w−1/n−1h|u|1/n−1u− γ |u|m−1u−h(hx + bx)= 0, (7a)
wht + (wuh)x = wa. (7b)

For the case of m= 1/n (which arises naturally from theo-
ries of hard-bed sliding; see, e.g., Weertman, 1957; Fowler,
1981), we get a diffusive model for ice thickness evolution:

wht −

[
wn+2hn+1

(h+ γw(n+1)/n)n
|(h+ b)x |

n−1(h+ b)x

]
x

= wa. (8)

This is essentially analogous to “shallow-ice” models in ice
sheet flow (Fowler and Larson, 1978): we have a local bal-
ance of forces and an ice flux that depends on ice thickness
and ice surface slope (see also Kowal et al., 2013). Other
choices of m> 0 also imply an ice flux uh that is an in-
creasing function of width w, thickness h and surface slope
−(hx+bx), but that flux cannot be computed in closed form.

4.2 The grounding line boundary layer

The model Eq. (7) holds everywhere except near the ground-
ing line and in the floating ice shelf. Following Schoof
(2007a), we can use the method of matched asymptotic ex-
pansions (Holmes, 1995) to capture the behaviour of ice flow
in that region. This requires us to rescale the dimensionless
model Eq. (4) to bring back extensional stress at leading or-
der while maintaining an O(1) ice flux q = uh. The appro-
priate rescaling turns out to be

X = ε−n/(n+1)(x− xg), T = t, H = ε−n
2/(n+1)2h,

U = εn
2/(n+1)2u.

By contrast with Schoof (2007a), we also have to include a
potentially non-zero ice shelf length here, so we put

Xc = ε
−n/(n+1)(xc− xg).

We treat H and U as functions of (X,T ) and Xc as a func-
tion of T . The rescaling in H implies that ice thickness at
the grounding line must be small compared with the interior
of the glacier. If there is a floating portion, the glacier must
however also reach its flotation thickness at the grounding
line. We assume that the glacier is at least near flotation if it
has a calving front that remains above flotation. This implies
that bed elevation must be small compared with ice thickness
in the interior. Specifically, we rescale

B = ε−n
2/(n+1)2b

and assume that B ∼O(1); the analogous case of laterally
unconfined flow discussed in Schoof (2007a) also requires
shallow bed topography. In addition, we assume that thick-
ness b and width w change significantly only over length
scales associated with the glacier length as a whole. Over the
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short length scale associated with the boundary layer coordi-
nateX, we treat B = ε−n

2/(n+1)2b(xg) and widthW = w(xg)

as constant. These additional constraints are again analogous
to those made in Schoof (2007a) and imply that we should
treat b and bx as small in the outer problem Eq. (7). With B
constant at leading order in the boundary layer, we can also
define a scaled flotation thickness

Hf =−r
−1B,

which we will use throughout the rest of the paper as a proxy
for water depth to bedrock.

In order for the rescaling in H above to be consistent,
we also require that the calving front thickness be similarly
small. This turns out to require that λ∼O(εn

2/(n+1)2), and
we define the calving parameter

3= r−1ε−n
2/(n+1)2λ

assuming that3=O(1); all this implies is that water depths
in surface crevasses are not so large as to create calving cliff
heights much larger than the expected depth to bedrock at the
grounding line.

The result is a boundary layer model at leading order in ε.
We do not give the detailed derivation here but merely state
its form:

4(H |UX|1/n−1UX)X −W
−1/n−1H |U |1/n−1U

− γ εn[1−n(m+1)]/(n+1)2θ |U |m−1U

− [1− (1− θ)r]HHX = 0, (9a)
(HU)X = 0, (9b)

for X <Xc, where

θ = 1 for H ≥Hf, θ = 0 otherwise. (9c)

The additional boundary condition at the calving front takes
the form

4H |UX|1/n−1UX = (1− (1− θ)r)H 2/2− θrH 2
f /2

at X =Xc, (9d)

H = rHfφ
(
3H−1

f

)
at X =Xc. (9e)

Note that the boundary layer is in a pseudo-steady state.
This is again analogous to Schoof (2007a); the timescale for
dynamic adjustment of ice thickness in the boundary layer
and of calving front position relative to the grounding line
is much shorter than the timescale relevant to the evolution
problem Eq. (7) (see also Pattyn et al., 2012). We emphasize
that there is no assumption here that the glacier as a whole is
in steady state.

In order to make the balances in Eq. (9) work with ε� 1,
we have to deal with the remaining coefficient that con-
tains a power of ε in Eq. (9). We now make further as-
sumptions about the physics of the flow near the grounding

line. Our fundamental assumption will be that lateral drag
−w−1/n−1h|u|1/n−1u plays a leading order role in force bal-
ance at the grounding line but that the floating ice shelf, if it
exists, is not so long as to fully buttress the grounding line.
By this, we mean that the depth-integrated extensional stress
4h|ux |1/n−1ux is comparable in magnitude to h2 all the way
up to the grounding line, as is the case at the terminus xc
by dint of the boundary condition Eq. (4d), but that sidewall
drag cannot be neglected.

In that physical regime (termed a “distinguished limit”, in
which all physical processes are potentially active), we have
to assume that the basal drag coefficient in Eq. (9a) and the
calving coefficient in Eq. (9e) are both ofO(1), meaning that
the parameter 0 defined through

0 = εn[1−n(m+1)]/(n+1)2γ (9f)

is of O(1). We confine our analysis to parameter regimes
where this is the case. Note that with m> 0 and n≥ 1 this
implies, strictly speaking, that γ � 1, and basal friction up-
stream of the boundary layer is formally small in the param-
eter regime we are considering.

Asymptotic matching is the mathematical formalism by
which the boundary layer problem and the “outer” prob-
lem Eq. (7) for the dynamics of the bulk of the glacier are
connected (Holmes, 1995). With the assumptions on 0 in
place, this leads to so-called matching conditions between
the boundary layer and the outer problem:

lim
X→−∞

UH =Q= lim
x→x−g

(−wn+1h|hx |
n−1hx),

W−1/n−1Q|U |1/n−1
∼−(Q/U)(Q/U)X,

U → 0 as X→−∞. (9g)

Here Q is the flux at the boundary of the domain of the
outer problem, to be determined through the solution of the
boundary layer problem. Physically, the first condition states
that the flux near the grounding line in the outer problem
is the flux that enters the boundary layer at its upstream
end. The second condition states that, near that upstream end
of the boundary layer, extensional stress gradients have be-
come insignificant and flux is given by a shallow-ice type
formula (with U =Q/H , the condition can be re-written
as Q∼−W n+1H |HX|

n−1HX, the appropriate local-force-
balance formula in our case). Lastly, the third condition states
that velocities in the interior of the boundary layer are large
compared with those in the rest of the glacier. Structurally,
the boundary layer problem above is very similar to that in
Schoof (2007a), with additional physics due to lateral shear-
ing and calving accommodated at the cost of a more compli-
cated formulation.

From the perspective of the model Eq. (8) for the dynamics
of the glacier as a whole, the purpose of the boundary layer
is to provide the relevant boundary conditions at x = xg. As
Eq. (8) is a diffusion model for h, it requires two boundary
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conditions at any moving boundary. Where a floating portion
exists, a condition on h at the grounding line arises straight-
forwardly from Eq. (1k); for a grounded calving front, an
equivalent condition is provided by Eq. (4e).

As in previous work (Schoof, 2007a), we can show that
the second boundary condition takes the form of a flux con-
dition that can be found by solving the boundary layer prob-
lem: the problem Eq. (9) has a solution only if Q satisfies
a functional relationship with flotation thickness Hf, width
W , friction coefficient 0 and the calving parameter 3. It is
important to emphasize again that Hf need not be the ice
thickness at what we have termed the “grounding line”. In-
stead, Hf is the flotation thickness there, determined purely
by bedrock depth, and ice thickness equals Hf at the ground-
ing line only if the glacier has a floating shelf or is at the
point of forming one. The flotation thickness Hf =−B/r is
of course prescribed for any given grounding line position, as
is the channel width W . We therefore end up with ice flux as
a function of grounding line position, basal drag coefficient
0 and the calving parameter3, itself a proxy for water depth
in surface crevasses.

We give additional detail on how to compute that relation-
ship between flux, geometry and model parameters in Ap-
pendix B and in the Supplement, and the code used to solve
the problem is also included in the Supplement. Importantly,
we are able to show the relationship takes the form

Q=WH n+1
f G3

(
Hf

3
,
0W (nm+n+m+1)/(n+1)

32−nm ,n,m,r

)
. (10a)

The practical use of this form is that it reduces the com-
plexity of the flux formula: for a given set of constants n, m
and r , what we primarily need to calculate is the dependence
of flux on the first two arguments of the function G3. For
the FL law, we can in fact go further and use the fact that flux
cannot depend on the now redundant parameter3 to simplify
the expression to

Q=WH n+1
f G0

(
0W (nm+n+m+1)/(n+1)

H 2−nm
f

,n,m,r

)
. (10b)

5 Solutions of the boundary layer problem

Equation (10a) allows us to collapse solutions for flux onto
a one-parameter family of plots for each of the two calv-
ing laws considered (the FL and CD calving laws). Specif-
ically, we can plot Q/(W3n+1) against Hf/3 for fixed val-
ues of 0W (nm+n+m+1)/(n+1)/32−nm. Roughly speaking, we
can think of this as plotting fluxQ against flotation thickness
Hf for different values of the basal drag coefficient. Solutions
are plotted in this way in Fig. 5a. The black curves signify so-
lutions with vanishing basal friction (0 = 0), while coloured
curves show solutions with non-zero values of 0 as speci-
fied in the figure caption. The dashed line in each case corre-

sponds to the FL model, while the solid line corresponds to
the CD calving model.

As already suggested by the steady-state solutions to the
full problem in Fig. 3, Fig. 5 confirms that flux is not a
monotonically increasing function of flotation thickness Hf
for the CD model. We have what we term an anomalous
flux–flotation-thickness relationship for large enough values
of Hf: flux Q actually decreases with increasing flotation
thickness Hf for all but relatively small Hf, at least for mod-
erate or small basal drag coefficients. For large values of the
basal drag coefficient (the 0W (n+1)/n/3= 25 and 125 cases
shown), the relationship between Q and Hf is even more
complicated. We have the same anomalous flux–flotation-
thickness relationship as for small basal drag while the calv-
ing front is grounded, but for a floating calving front we find
that flux Q increases again with Hf (this is even clearer in of
Fig. 7a, which is a zoomed-in version of Fig. 5). In all cases,
the flux for the CD calving model approaches the same limit
for large Hf, independently of the calving law.

By contrast, the flux always increases with flotation thick-
ness in the calving at floatation model, just as it does in lat-
erally unconfined marine ice sheet flow (Schoof, 2007a). In
fact, Eq. (10b) already told us as much for the case of vanish-
ing basal friction coefficient 0. Note that the flux curve for
the CD model and for the FL model always has a point of in-
tersection at Hf/3= 2. From the definition of φ in Eq. (1i),
it is easy to see that this is the point at which the calving front
is just at flotation in the CD model. Therefore, the model pro-
duces the same result as the FL model. For smaller values of
Hf/3, the CD model has a grounded calving front, while the
calving front becomes the terminus of a floating ice shelf at
larger values of Hf/3. Note that flux in the CD model is al-
ways a decreasing function of Hf/3 for Hf/3 slightly less
than the critical value of 2 for changeover from a grounded
to a floating terminus. This observation will be key to our
interpretation of the physics involved in the anomalous flux–
thickness relationship.

Other features of our solutions are also shown in panels
(a)–(c) of Fig. 5. Each panel isolates one parameter (Hf, 3,
W ) on the horizontal axis but normalizes it as dictated by
Eq. (10) and plots it against an also normalized flux (again
as dictated by Eq. 10) on the vertical axis. Apart from the
dependence of Q on Hf, panel (a) also shows that flux al-
ways decreases with increasing friction coefficient 0, while
panel (c) shows that flux increases with channel width W .
This holds regardless of the calving model used and is what
one expects intuitively: wider channels and lower basal drag
ought to speed up ice flow and lead to larger ice discharge.
Panel (b) shows that, for the CD calving law, flux also in-
creases with the calving parameter 3: recall that the calv-
ing parameter 3 is a dimensionless version of water depth
in surface crevasses, and larger values of 3 lead to taller
calving cliffs and hence to larger extensional stresses near
the grounding line. In fact, the flux is far more sensitive
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Figure 5. Solutions of the boundary layer problem. r = 0.9; n= 1/m= 3. Dashed lines represent the FL law, solid lines the CD calving
law. Grey shading indicates a grounded calving front in the CD model, and the white background a floating shelf. (a) Normalized flux
against normalized thickness at different basal friction parameter values, 0W (n+1)/n/3= 0 (black line), 1 (blue), 5 (red), 25 (green)
and 125 (magenta). (b) Logarithm of normalized flux against normalized calving parameter at different basal friction parameter values,
0W (n+1)/n/Hf = 0 (black line), 1 (blue), 5 (red), 25 (green) and 125 (magenta). (c) Normalized flux against normalized channel width at
different (grounded) ice thickness: Hf/3= 2 (black), 5/3 (blue), 4/3 (red), 1 (green) and 2/3 (magenta). (d) Same as panel (c) but with
floating ice thickness values Hf/3= 2 (black), 7/3 (blue), 8/3 (red) and 10/3 (green).

to changes in 3 than in any other parameter: notice that
panel (b) plots the logarithm of the flux on the vertical axis.

We can also confirm our boundary layer results by di-
rect comparison with numerical solutions of the full ice flow
problem, computed by the method in Sect. 3.2. This is shown
for the case of vanishing basal friction in Fig. 6. Here we use
the same parameter values as in Fig. 3 but for two different
values of ε. Different solutions to the steady-state problem
are again obtained by varying a. For each a, we plot ice flux
across the grounding line in the steady-state solution, scaled
as in Sect. 4.2, against flotation thickness at the grounding
line, also scaled as in Sect. 4.2. As expected, the flux solu-
tions obtained from the full steady-state problem Eq. (6) for
the CD and FL models converge to those obtained from the
boundary layer problem as ε is made smaller: for ε = 10−4,
the flux curves are virtually indistinguishable, confirming the
accuracy of the boundary layer solution.

There are two aspects of the CD model flux solution that
we still need to explain in more detail: (i) why flux decreases
with increasing flotation thicknessHf in some circumstances
and (ii) why flux approaches a constant limit for largeHf and

so becomes independent of depth to bedrock in the channel,
depending instead only on the calving parameter 3. We turn
to these problems next.

5.1 The role of extensional stress at the grounding line

Key to the flux–flotation-thickness relationship is that flux
depends on the extensional stress at the grounding line, and
that extensional stress in turn depends on the geometry of
the calving front and floating ice shelf. For relatively small
extensional stresses 6 defined by

6 = 4|UX|1/n−1UX

(“small” meaning that 6 is much smaller than H ), it is pos-
sible to derive an approximate formula for flux in terms of
ice thickness Hg =H(0) and extensional stress 6g =6(0)
at the grounding line X = 0. For the remainder of this sec-
tion, we will use the commonly assumed friction exponent
m= 1/n. We obtain from Eq. (9b) that

−HX =HUX/U,
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Figure 6. Comparison of the solution of the boundary layer problem
with 0 = 0 (black lines, solid for the CD model, dashed for FL) and
solutions of the steady-state problem Eq. (6), solved with the param-
eter values given in the caption of Fig. 3. Plotted is scaled, normal-
ized ice flux against scaled, normalized ice thickness for ε = 10−2

(blue symbols) and ε = 10−4 (red symbols). Diamonds show solu-
tions for the CD model, and circles show solutions for the calving
model.

and if we neglect gradients of H6 in force balance, then
Eq. (9a) leads to

|U |(n+1)/n
≈H 2UX/(0+W

−(n+1)/nH).

Therefore, with the condition 4|UX|1/n−1UX =6g, H =Hg
at X = 0,

Q≈

(
1
4

)n2/(n+1) H
(3n+1)/(n+1)
g 6

n2/(n+1)
g

(0+W−(n+1)/nHg)n/(n+1) . (11)

This formula is essentially a modification of formula (29)
in Schoof (2007b), and its derivation is a translation of Ap-
pendix A of Schoof (2007a) to our modified boundary layer
problem. The omission of the extensional stress gradient can
also be formalized on the basis that the density difference
(1− r) between ice and water is small, leading to gradients
ofH6 being negligible in the balance of forces (see the Sup-
plement).

For the FL model, it is easy to extract an analytical formula
for flux as a function of channel width and depth to bedrock
from Eq. (11). Specifically, we have Hg =Hf and 6g = (1−
r)Hf/2, so we get

Q≈

(
1− r

8

)n2/(n+1) H
(n2
+3n+1)/(n+1)

f(
0+W−(n+1)/nHf

)n/(n+1) , (12)

which simply generalizes formula (3.51) in Schoof (2007a)
with m= 1/n to the case of lateral as well as basal drag.
With 0 = 0, we can also immediately recognize a version of
formula (10b) with

Q≈

(
1− r

8

)n2/(n+1)

WH n+1
f . (13)

Figure 7b and c show that Eq. (12) performs well for 0 = 0
and 0 = 125. Clearly, Eq. (12) predicts flux increasing with
flotation thickness; this is the result of both grounding line
thicknessHg and extensional stress 6g increasing with flota-
tion thickness Hf at the grounding line. Next, we will use
Eq. (11) to explain the anomalous behaviour with the CD
calving law.

5.2 Grounded calving fronts

Here, we are interested in the anomalous relationship be-
tween Q and the flotation thickness Hf. Recall that Hf =

−B/r is given by depth to bedrock B and is therefore pre-
scribed for a given grounding line location. The actual ice
thickness Hg at the grounding line is equal to Hf when the
glacier has a floating ice shelf or calves at flotation; for
a grounded calving cliff, Hf may exceed Hg. However, as
Fig. 2 shows, Hg always increases with Hf. Equation (11)
further shows that flux Q increases with ice thickness Hg
and extensional stress 6g at the grounding line. The anoma-
lous relationship must therefore hinge on 6g decreasing suf-
ficiently rapidly as flotation thickness Hf increases.

Note that the anomalous decrease in flux with increasing
flotation thickness is most pronounced around the critical
valueHf/3= 2, where the calving front goes from grounded
to floating. We can understand the behaviour of ice flux near
that value by considering the effect of small perturbations
in Hf away from that critical value. Again, recall the ac-
tual thickness at the calving front is given byHc =H(Xc)=

rHfφ(3H
−1
f ). Let the critical value of Hf be Hf0 = 23, for

whichHc =Hf0. Now consider perturbingHf slightly, say to
Hf0+H

′

f . We can use a first-order Taylor expansion of φ to
compute the perturbed calving front thickness as

Hc= r(Hf0+H
′

f )φ

(
3

Hf0+H
′

f

)
= r(Hf0+H

′

f )

[
φ

(
3

Hf0

)
−φ′

(
3

Hf0

)
3H ′f

H 2
f0
+O(H ′f

2
)

]
,

where the prime on φ denotes an ordinary derivative. For the
CD model, Eq. (1i) shows that φ(3/Hf0)= φ(1/2)= r−1

and φ′(3/Hf0)= 2r−1, so

Hc =Hf0+O(H
′

f
2
). (14)

In other words, at linear order, a small perturbation in
bedrock depth has no effect on ice thickness at the calv-
ing front in the CD model. Note that because φ in the CD
model is continuously differentiable, this holds regardless
of whether H ′f is positive or negative, that is, regardless of
whether the perturbation causes a calving cliff thicker than
flotation or a floating ice shelf to form.

Maintaining constant ice thickness at the calving front
while bedrock depth changes has a significant effect on the
extensional stress at the grounding line. Consider the case of
a grounded calving front when H ′f < 0; the grounding line
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Figure 7. Limiting forms of ice flux near the critical ice thickness Hf/3= 2 and for large Hf/3. (a) A zoomed-in version of Fig. 5a, same
colour scheme. The black, red and blue curves exhibit the anomalous relationship between flux and flotation thickness for a floating calving
front, the green and magenta curves (with larger basal friction coefficients) do not. The “dominant stress” labels refer to terms in the force
balance of the shelf that balance the depth-integrated extensional stress gradient (H6)X for different basal drag coefficients 0; see Sect. 5.3.
Red markers correspond to profiles shown in Fig. 9. (b) Solution to the boundary layer problem for 0W (n+1)/n/3= 0 plotted in black
(same as in panel a). Formula (12) is shown as a blue dashed line, formulae (16) and (20) as blue solid lines, while the dot-dashed blue line
indicates the long shelf limit Eq. (24). Red markers correspond to the profiles shown in Fig. 8a and b. (c) Same as panel (b) but with the
boundary layer solution for 0W (n+1)/n/3= 125 shown in magenta and with red markers corresponding to profiles in Fig. 8c.

thickness is the calving front thickness Hg =Hc ≈Hf0. The
stress condition Eq. (9d) can also be approximated to first
order in H ′f as

6g = 4|UX|1/n−1UX ≈ (1− r)Hf0/2−H ′f at X = 0. (15)

As we have assumed that the flotation thickness perturbation
H ′f is negative, we see an increase in extensional stress rela-
tive to the unperturbed flotation thicknessHf0. Even for small
H ′f , the increase can be very significant: with 1−r = 0.1,H ′f
only needs to be 1/20 of the unperturbed flotation thickness
Hf0 in order for the stress perturbation to be the same size
as the unperturbed stress (1−r)Hf0/2. An illustration of this
effect is given in Fig. 8a, where a slight decrease in flotation
thickness (panel a1) clearly leads to a substantial increase in
extensional stress (panel a2).

The extensional stress perturbation occurs because the
calving cliff ice thickness has not changed at first order, but
bedrock depth is shallower. The calving cliff now protrudes
further above the water line, and the depth-averaged normal
stress exerted on it by the water is smaller. As a result, the
extensional stress in the ice has to increase. This increase in
stress is what leads to the increase in flux caused by the de-
crease in flotation thickness Hf. In fact, for small H ′f < 0,
Eq. (11) then becomes

Q≈

(
1− r

8

)n2/(n+1)

H
(3n+1)/(n+1)
f0

[
Hf0− 2(1− r)−1H ′f

]n2/(n+1)(
0+W−(n+1)/nHf0

)n/(n+1) , (16)

and Q increases as H ′f becomes more negative.

This is consistent with the behaviour shown in Fig. 5. For
grounded calving, we always find the anomalous relationship
betweenQ andHf, regardless of the basal friction parameter.
Figure 7b and c also show that Eq. (16) is accurate only for
very small H ′f ; this is presumably a result of the fact that
1− r = 0.1 is not extremely small and of the fact that the
quadratic term in Eq. (14) starts to become large enough to
affect results (indeed, Fig. 2a indicates that a linearization
of φ is unlikely to be accurate for grounded calving fronts
except very close to Hf/3= 2).

5.3 Floating calving fronts

We can conversely take the case ofH ′f > 0, which leads to the
formation of a floating ice shelf. As the calving front thick-
ness does not change to first order, the extensional stress at
the calving front remains equal to

6(Xc)= 4|UX|1/n−1UX = (1− r)Hf0/2. (17)

Suppose that basal drag is not so large as to render lateral
drag insignificant on the grounded portion of the bound-
ary layer. In that case, even though the ice at the ground-
ing line is slightly thicker than at the calving front (by H ′f ),
the driving stress in the floating ice shelf is small com-
pared with the other forces acting on the shelf. In partic-
ular, the surface slope of the ice shelf is small because of
the small density difference between ice and water. Most
of the reduction in thickness between grounding line and
calving front is accounted for by the bottom of the ice
shelf sloping upwards (see Fig. 8b1). The surface slope
of the ice shelf (which causes the driving stress) is only
(1− r)/r times the bottom slope. Since the driving stress
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Figure 8. Boundary layer solutions r = 0.9, n= 1/m= 3, 3=W = 1. (a1, b1, c1) Boundary layer ice geometry, same colour scheme as in
Fig. 1. (a2, b2, c2) The corresponding extensional stress profiles. Dashed lines correspond to the FL model with Hf = 2 (the “unperturbed”
flotation thickness Hf0 in Sect. 5.2 and 5.3), and solid profiles to perturbed flotation thicknesses. (a, b) 0 = 0 (the dashed profiles are
identical), with the solid line showing (a) Hf = 1.9 (grounded cliff) and (b) Hf = 2.1 (floating calving front). (c) 0 = 125, with the solid line
showing Hf = 2.1.

is weak, the dominant balance of forces on the ice shelf is
then between the gradient of depth-integrated extensional
stress (H6)X = 4(H |UX|1/n−1UX)X and the lateral drag
W−(n+1)/nH |U |1/n−1U : in other words, Eq. (9a) becomes
approximately

(H6)X −W
−(n+1)/nH |U |1/n−1U ≈ 0, (18)

with the driving stress an O(1− r) correction. It follows that
the floating ice shelf acts to reduce extensional stress at the
grounding line relative to its value at the calving front; this is
the buttressing effect of the ice shelf.

For small H ′f , we obtain a short ice shelf and can treat
H ≈Hf0 and U ≈Q/Hf0 in the shelf as constant, so that

6(X)≈ (1− r)Hf0/2−W−(n+1)/nQ1/nH
−1/n
f0 (Xc−X),

withXc being the length of the floating ice shelf. This effect –
the linear reduction in extensional stress in the floating shelf
with distance from the calving front – is illustrated in Fig. 8b.

The shelf length is dictated byH ′f . A larger flotation thick-
ness requires a longer ice shelf before the calving front thick-
ness Hf0 is reached, potentially leading to more buttress-
ing. The ice shelf thickness gradient is −HX =HUX/U ≈
H 2

f06
n/(4nQ), and the shelf length Xc is constrained by the

fact that the decrease in ice thickness between grounding line
and calving front is H ′f ≈

∫ Xc
0 −HXdX. This allows us to

compute Xc and hence the stress at the grounding line:

6g =6(0)≈

{[
(1− r)Hf0

2

]n+1

−
(n+ 1)4nQ(n+1)/nH ′f

W (n+1)/nH
(2n+1)/n
f0

}1/(n+1)

. (19)

Substituting Eq. (19) in Eq. (11), we find that flux satisfies,
for small H ′f > 0,

Q≈
H
(3n+1)/(n+1)
f0(

0+W−(n+1)/nHf0
)n/(n+1)

{[
(1− r)Hf0

8

]n+1

−
(n+ 1)Q(n+1)/nH ′f

W (n+1)/nH
(2n+1)/n
f0

}n2/(n+1)2

. (20)

At first glance, it does not seem that Eq. (20) is of much use
– it defines Q implicitly. However, from Eq. (19), it is not
difficult to show that an increase in H ′f leads to a decrease
in extensional stress 6g at the grounding line and, therefore,
to a decrease in flux Q. The stress decreases because the ice
shelf lengthens asH ′f increases and the total amount of lateral
drag on the ice shelf increases.

Again, we have given an ad hoc derivation for Eq. (20). We
can formalize that derivation as shown in the Supplement,
once more based on the small density difference 1− r . Fig-
ure 7b shows that Eq. (20) is more qualitatively than quantita-
tively accurate for the case of no basal friction 0 = 0. Again,
this is presumably the result of 1− r not being extremely
small and of higher-order terms in the approximation scheme
above becoming important.

However, as Fig. 7a also shows, the anomalous behaviour
disappears entirely for floating ice shelves when the basal
friction coefficient 0 becomes large. In such cases, the
argument above must become qualitatively incorrect. The
changeover from the anomalous behaviour for flow dom-
inated by lateral drag to the “normal” behaviour obtained
with significant basal drag occurs because, when the basal
friction coefficient is large, ice velocities near the ground-
ing line become small. This has two effects: it (i) reduces
the lateral drag term W−(n+1)/nH |U |1/n−1U in Eq. (9a) and
(ii) increases the thickness gradient and, therefore, the driv-
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ing stress. Specifically, conservation of mass in the floating
shelf dictates that

HX =−HUX/U =−H |6|
n−16/(4nU), (21)

so thatHX becomes large whenU is small. The driving stress
−(1− r)HHX can then no longer be ignored in Eq. (9a);
Eq. (18) is no longer applicable, and neither is Eq. (20). An
increase in flotation thickness can now potentially cause an
increase in ice flux, at least when the calving front is afloat.
This is shown in Fig. 8c and is also described in more formal
detail in the Supplement.

It is relatively straightforward to estimate how large 0
needs to be in order for driving stress to appear at lead-
ing order in the shelf. Note that thickness, velocity and
stress are continuous across the grounding line. As a result
of Eq. (21), so is the thickness gradient HX, but not the
surface slope. With large 0 on the grounded side, driving
stress balances basal shear, −HHX ∼ 0|U |1/n−1U . In order
for driving stress to appear at leading order in the shelf, it
should be comparable to lateral drag, so −(1− r)HHX ∼
W−(n+1)/nH |U |1/n−1U . It follows that

0W (n+1)/n/H ∼ 0W (n+1)/n/(23)∼ (1− r)−1. (22)

With r = 0.9, this corresponds to 0W (n+1)/n/3∼ 20, con-
sistent with panel (a) in Fig. 7, where the green line corre-
sponds to 0W (n+1)/n/3= 25.

Finally, consider the limiting case of very large basal fric-
tion coefficient (i.e. 0W (n+1)/n/H � (1− r)−1) combined
with an ice shelf that has limited extent. By an extension of
the argument above, this corresponds to a large driving stress
and to lateral drag playing an insignificant role in force bal-
ance. In this case, we can make our theory agree with previ-
ous work for laterally unconfined flow in Schoof (2007a) by
simply ignoring lateral drag in Eq. (9a):

(H6)X − (1− r)HHX = 0.

Integrating and applying the boundary condition Eq. (17)
shows that extensional stress at the grounding line is simply
given by

6g = (1− r)Hf/2.

This is the same extensional stress at the grounding line as
we would expect in the case of the FL model. The flux in-
creases monotonically with floatation thickness when this is
substituted into Eq. (11) and 0 is assumed large:

Q≈

(
1− r

8

)n2/(n+1) H
(n2
+3n+1)/(n+1)

f(
0+W−(n+1)/nHf

)n/(n+1)

≈

(
1− r

8

)n2/(n+1)H
(n2
+3n+1)/(n+1)

f
0n/(n+1) . (23)

Since we are assuming that m= 1/n, this is actually nothing
more than a scaled version of Eq. (3.51) in Schoof (2007a).

As Fig. 7a shows, we do get agreement between the CD calv-
ing law results and the FL model for large basal friction coef-
ficients, at least whileHf/3 remains close enough to the crit-
ical value of 2: the flux curves then agree well with each (as
indicated by the arrow labelled “driving stress dominant”).

For larger Hf/3, this agreement ceases. The shelf gets
long enough that, even with large enough basal friction on
the grounded portion, lateral drag on the floating shelf can-
not be ignored. The next section describes in more detail the
mechanics of a very long ice shelf.

5.4 The finite flux limit for large flotation thickness

For a fixed value of 3 and large flotation thickness Hf, the
fluxQ appears to approach a finite limit in Fig. 5a. That limit
is of the form

Q∼ (1− r)nC(n)W(23)n+1, (24)

with C ≈ 8.67× 10−3 for n= 3, regardless of the choice of
basal drag parameter 0. The physics behind this are relatively
simple: a large value of Hf corresponds to a large difference
between ice thickness at the grounding line and at the calv-
ing front, which in turn requires a long ice shelf. With a long
ice shelf, most of the floating ice shelf becomes fully “but-
tressed”, in the sense that extensional stress gradients are
weak and there is a balance between driving stress and lat-
eral drag as well as basal drag in the grounded part of the
glacier. In other words, a local force balance persists around
the grounding line, and extensional stresses only become sig-
nificant in the floating shelf close to the calving front. More-
over, since we are assuming that the floating shelf is still
short compared with the length of the glacier and do not
include basal melting in our model, ice flux also varies in-
significantly along the floating shelf. Hence, the flux through
the grounding line is the same as the flux through the calv-
ing front. Importantly, we now have a situation in which ice
flux through the grounding line is determined entirely by the
calving parameter 3 and independent of depth to bedrock at
the grounding line.

This situation was previously explored by Hindmarsh
(2012) and Pegler (2016). These authors find that ice flux
through the calving front is determined in a boundary layer
around the calving front in which extensional stress is sig-
nificant. In our notation, the boundary layer takes exactly the
same form as Eq. (9) for floating ice (θ = 0) but with differ-
ent matching conditions:

4(H |UX|1/n−1UX)X −W
−(n+1)/nH |U |1/n−1U

− (1− r)HHX = 0, (25a)
(UH)X = 0 (25b)

for X <Xc, with

4H |UX|1/n−1UX = (1− r)H 2/2,
H =Hc at X =Xc, (25c)
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where Hc is the prescribed calving front thickness, and

UH →Q,

W−1/n−1Q|U |1/n−1
∼−(1− r)(Q/U)(Q/U)X,

U → 0 as X→−∞. (25d)

The analysis of this boundary layer (a formal derivation of
which is included in the Supplement) is much the same as
for Eq. (9), and Q satisfies a power-law relationship with ice
thickness Hc and channel width W at the calving front, of
the form Q∝ (1− r)nC(n)WH n+1

c . In the CD model, the
ice thickness at a floating calving front is Hc = 23, which
gives the flux relationship Eq. (24). A more detailed deriva-
tion of the relationship Eq. (24) is given in the Supplement,
and a numerical value computed from the reduced boundary
layer model presented there agrees very well with that given
above, obtained from the solutions to the full boundary layer
problem Eq. (9) for large values of Hf/3. In fact, conver-
gence to that value is very rapid asHf/3 increases, as shown
in Fig. 7a. Figure 9 shows that, for even moderately large val-
ues ofHf/3 (so when the ice shelf still has relatively limited
extent), the thickness and stress profile near the calving front
are well approximated by the solution to Eq. (25), regardless
of the amount of basal friction in the grounded part of the
glacier. The fluxes in all three examples shown in Fig. 9 are
almost identical.

Consider the special case of no basal drag on the grounded
part of the glacier. We can show how Eq. (24) confirms that
we expect an anomalous flux-depth-to-bedrock relationship
due to buttressing in the ice shelf. Take a grounded calv-
ing cliff just at flotation, with thickness Hf =Hc. The flux
is given by Eq. (12) with 0 = 0. Compare this with the flux
through a long floating ice shelf that terminates in a calv-
ing cliff of the same thicknessHc. The solution Eq. (24) then
predicts that the flux through the floating shelf is smaller than
through the grounded calving front, even though the two have
the same thickness. This is true at least when the density
difference 1− r is small, because the exponent n2/(n+ 1)
on (1− r) in the formula for flux for the grounded cliff in
Eq. (13) is smaller than the exponent n for the floating cliff
in Eq. (24). This provides further evidence for the buttressing
action of the ice shelf leading to an anomalous flux–flotation-
thickness relationship.

6 Discussion and conclusions

In this paper, we have applied the boundary layer analysis
of Schoof (2007a) to a model for channelized outlet glacier
flow, incorporating a parameterized description of lateral
drag (Dupont and Alley, 2005) and a simple calving law due
to Nick et al. (2010). The purpose of this work has been to
show how calving and lateral drag can potentially combine
to produce a very different relationship between ice flux at
the grounding line and glacier bed geometry from that for
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Figure 9. Solutions for a long shelf, same plotting scheme and pa-
rameter values as in Fig. 8. The dashed line shows the solution with
0 = 125 andHf = 3.9, the solid line shows 0 = 0 andHf = 3. Both
are marked with red diamonds in Fig. 7a. The red line shows the so-
lution to the near-calving-front boundary layer Eq. (25). All three
solutions agree closely with this boundary layer near the calving
front.

laterally unconfined marine ice sheet flow. For the latter, ice
flux is an increasing function of depth to bedrock, while for
a channelized outlet glacier we find that an “anomalous” re-
lationship in which flux decreases with increasing depth to
bedrock is possible (Fig. 5a above).

Such an anomalous relationship has significant conse-
quences for stable glacier margin positions. Consider the
model Eq. (8) for the flow of the glacier as a whole. Two
boundary conditions apply at the free boundary x = xg. One
of these is a thickness condition, while the second is the flux
condition Eq. (10a), which can be written in the form

q(xg(t), t)=Qg
(
−b(xg(t)),w(xg(t)),λ,γ,ε,m,n,r

)
,

where q =−wn+1hn+1(h+w(n+1)/nγ )−n|(h+b)x |
n−1(h+

b)x is ice flux, and Qg is the flux Q predicted by the bound-
ary layer problem, written in terms of the original dimension-
less parameters and the channel geometry at the grounding
line.

Steady states can now be computed easily from Eq. (8).
To determine their stability, the theory of Fowler (2011)
and Schoof (2012) can be extended straightforwardly to the
present case, the only modification required being the gen-
eralization of the thickness variable h and flux variable Q in
Schoof (2012) to our wh and wq, respectively. It then fol-
lows that a steady state is linearly stable if and only if (see,
e.g., condition (5.1) in Schoof, 2012)

d
dxg

[
w(xg)Qg

(
−b(xg),w(xg),λ,γ,m,n,r

)]
>w(xg)a(xg). (26)

If Qg does not necessarily increase with b, then steady
grounding lines located on downward-sloping beds can be-
come unstable. This is illustrated in Fig. 3, where steady
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grounding line positions on a downward-sloping bed are
plotted against the accumulation rate a over the ice sheet,
which is assumed to be spatially uniform, as is channel width
w. The steady-state grounding line position of Eq. (8) is de-
fined implicitly by

wQ
(
−b(xg),w,λ,γ,m,n,r

)
= awxg.

Treating xg as a function of a and differentiating both sides
with respect to a, we have[

d
dxg

[
wQg

(
−b(xg),w(xg),λ,γ,m,n,r

)]
− aw

]
dxg

da
= wxg,

and when the stability condition Eq. (26) is satisfied,
dxg/da > 0, so that a stable grounding line must advance
when a is increased: a stable ice sheet gets larger when it
receives more surface snowfall. Figure 3 shows a solution
branch for which this is not the case, even though the ground-
ing line is located on a downward-sloping bed.

Conversely, we may see grounding lines attain stable
steady-state positions on upward-sloping beds if Qg de-
creases with depth to bedrock −b: Fig. 4 shows several ex-
amples in which the steady-state grounding line advances up
a reverse bed slope as accumulation rates are increased. A
second mechanism by which such stabilization on upward-
sloping beds can occur is the dependence of discharge wQg
on width w: a sufficiently narrow bottleneck in the channel
could stabilize a grounding line on an upward slope even if
Qg did increase with depth −b, because wQg is an increas-
ing function of w (this argument is due to Jamieson et al.,
2012). This second mechanism is however not responsible
for the behaviour shown in Fig. 4, where channel width is
constant along the domain. It is worth noting that simula-
tions of Greenland outlet glaciers using the CD calving law
(Nick et al., 2010) have similarly produced steady states lo-
cated on upward-sloping beds. Our work suggests that this
may be due not only to narrowing of the channel but also to
the calving law.

Our aim has not been to be authoritative in establish-
ing the existence of an anomalous flux–depth relationship:
our model contains at least three components that can be
improved upon. First, the parameterized description of lat-
eral drag should eventually be dispensed with, replacing our
model with one that resolves the cross-channel dimension.
The scaling that underlies our boundary layer model should
still be applicable in that case, but the actual boundary layer
model will consist of a set of coupled partial differential
equations (as opposed to ordinary differential equations) and
is likely to be much more onerous to solve for a large number
of parameter combinations, as we have been able to do here.

Second, we have neglected the effect of basal melting on
the shelf here. This is tractable in the framework we have de-
veloped here with a simple, prescribed basal melt rate, but
doing so still introduces sufficient complications to lie be-
yond the scope of a single paper; a second manuscript that
incorporates melting into our theory is in preparation.

Third, the calving law we have employed is relatively
poorly constrained by observation and is based on a number
of simple assumptions about how cracks form near a calv-
ing front. Furthermore, it relies entirely on water depth in
surface crevasses as a control parameter that should itself be
determined by additional physics governing the drainage of
surface meltwater.

We have chosen to take the calving model at face value,
simply prescribing the crevasse water depth as a control pa-
rameter. This is worth emphasizing as the dependence of
calving cliff height on flotation thickness predicted by the
calving model turns out to be key to the anomalous flux–
depth relationship. It is likely that other, more sophisticated
calving models (for instance one based on the formulation in
van der Veen, 1998a, b) can also be written in the form of
a calving cliff height as a function of crevasse water depth,
though presumably with a different specific from the CD
model: as in the latter, surface hydrology becomes a key com-
ponent in understanding calving.

For a floating ice shelf, calving cliff height in the CD
model is simply proportional to crevasse water depth and
independent of depth to bedrock. In other words, the CD
model can then be thought of as a generic calving model that
imposes a fixed thickness at the floating glacier terminus.
Moving the grounding line to a location with greater flota-
tion thickness (or, equivalently, depth to bedrock) therefore
leads to a longer ice shelf forming before it can reach the pre-
scribed calving cliff height. If the mechanical effect of the ice
shelf is primarily to provide lateral drag, then a longer shelf
leads to a greater reduction in extensional stress between
calving front and grounding line, and therefore to lower ice
flux despite a greater depth to bedrock at the grounding line.
Whether this occurs or not is a function of basal drag on
the grounded part of the glacier: if basal drag upstream of
the grounding line is moderate compared with lateral drag,
then the surface slope and driving stress of the floating shelf
will be small, so the effect of the shelf is mostly to generate
lateral drag. By contrast, if basal drag is large upstream of
the grounding line, then the floating shelf will be relatively
steeply sloped and lateral drag will play a lesser role in force
balance there, leading to the possibility that the floating shelf
does not cause a reduction in extensional stress and hence
flux through the grounding line. The changeover between the
two regimes happens when, in the notation of Sect. 3.1, the
basal drag coefficient is approximately (see Eq. 22 above)

γ ∼ (1− r)−1w−(n+1)/nb,

and λ∼ b.
As we have indicated, the thickness of floating calving

fronts in the CD model is uniquely controlled by the crevasse
water depth parameter and does not depend on depth to
bedrock. The same generic relationship between ice flux and
depth to bedrock at the grounding line will therefore be ob-
tained for any other calving law that fixes the height of a
floating calving front independently of depth to bedrock. By
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contrast, the CD model results are unlikely to be robust in
the same way for grounded calving fronts. Specifically, for
a grounded calving front, the Nick et al. (2010) calving law
predicts that calving cliff height decreases relatively slowly
when the calving front is moved to a location with shallower
depth to bedrock. In turn, this leads to more of the calving
cliff being exposed above the water line and consequently to
larger extensional stresses acting on the calving front, and
these larger extensional stresses cause ice flux to increase as
depth to bedrock is decreased.

This contrasts with an alternative “calving-at-flotation”
(FL) calving law, in which calving front height is always pro-
portional to depth to bedrock and no floating shelf forms. In
that case, extensional stress at the grounding line increases
with depth to bedrock, and so does ice flux.

We close by noting that our approach can potentially be
used to study the effect of other calving laws relatively sim-
ply in future, by replacing the function that specifies ice
thickness at the calving front. Since an anomalous flux-
depth-to-bedrock relationship may be possible and would
have significant consequences for stable outlet glacier con-
figurations, it may be worth testing this before embarking on
simulations of actual glaciers using different calving laws.

Code availability. The MATLAB code used in the computations
reported is included in the Supplement.
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Appendix A: A note on direct solutions of the
steady-state problem

At issue is the uniqueness of the orbit that emerges from
the fixed point of the dynamical system Eq. (6), at which
(h,σ,q,χ)= (h0, [a(0)/h0]

1/n,0,0): only when uniqueness
is guaranteed does the shooting method of Sect. 3.2 make
sense. Linearizing the dynamical system around the fixed
point leads to a problem with eigenvalues 0 (repeated),
a(0)w(0) > 0 and

−[4ε−1nh0(a(0)/h0)
1/n
− (n− 1)]a(0)w(0).

The sign of this last eigenvalue is negative when ε is small
enough. In that case, the fixed point has a two-dimensional
centre manifold, a stable manifold and an unstable manifold
(Wiggins, 2003). The centre manifold has no dynamics (it
consists of other fixed points, corresponding to different val-
ues of h0, or orbits that do not satisfy limη→−∞χ = 0), so
that the fixed point must be approached in the limit η→−∞
along the unique unstable manifold.

Appendix B: The boundary layer problem

The simplified forms of the flux law in Eq. (10) can be de-
rived by a transformation of the boundary layer problem
Eq. (9), using

U =Qn/(n+1)W 1/(n+1)U , H =Q1/(n+1)W−1/(n+1)H,
X =WX (B1)

and

C = 0W (m+n+3)/(n+1)/Q(2−nm)/(n+1),

Hf =Hf(W/Q)
1/(n+1), L=3(W/Q)1/(n+1),

Xc =WXc. (B2)

With these definitions, it is easy to show that Eq. (9) is in-
variant under the transformation

(U,H,X,Xc,Hg,W,Q,0,3)

7−→ (U ,H,X ,Xc,Hg,1,1,C,L).

The parameters in this rescaled version of the model are r , n,
m, Hf, C and L, while U and H are the dependent variables,
and X is the independent variable. It then can be shown that
the transformed boundary layer problem has a solution if and
only if the parameters r , n, m, Hf, C and L satisfy some
functional relationship with each other. Using this fact, it is
easy to show that the simplified flux laws Eq. (10) must hold.

Deriving that functional relationship between r , n, m, Hf,
C and L can be done by a further coordinate transform of the

dependent variables (see also Appendix A in Schoof, 2011)

Q= UH, 9 =Q−1U−(2n+1)/n2
|UX |1/n−1UX ,

ξ = U (n+1)2/n2
(B3)

and switching to an independent variable ζ defined through

ζ =

X∫
0

Q(X ′)−19(X ′)nξ(X ′)−1/(n+1)dX ′.

This transforms the boundary layer problem into a non-
singular dynamical system in which the matching conditions
Eq. (9g) correspond to a fixed point (9,ξ,Q)= (1,0,1) be-
ing attained as ζ →−∞, and there is a unique orbit along
which this can happen; to prove the uniqueness of that orbit,
an additional transformation to ν = ξ (n

2(m+1)−n)/(2(n+1)2)

may be required, but the basic argument remains the same
as in Schoof (2011). The boundary conditions Eqs. (9d)–(9e)
then provide two further constraints: one on the location of
the point along the orbit that corresponds to the calving front,
and another to relate the parameters of the model, leading to
a functional relationship between r , n, m, Hf, C and L. In
practice, this must be solved for numerically by integrating
the transformed dynamical system. More complete details on
the solution of the boundary layer problem can be found in
the Supplement and the numerical code provided therein.

www.the-cryosphere.net/11/2283/2017/ The Cryosphere, 11, 2283–2303, 2017



2302 C. Schoof et al.: Buttressed outlet glaciers

The Supplement related to this article is available online
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