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[1] Extensive bed topography at the scale of the ice
thickness occurs frequently in the form of drumlins. By
analogy with hard-bed sliding, ice flow over this type of
topography leads to the generation of drag on the ice,
particularly when ice flow is rapid. A crucial difference with
classical Nye-Kamb sliding is that the upper, free surface of
the ice has a significant effect on the sliding process through
the formation of a standing wave. Using a theoretical model,
we demonstrate that the presence of this wave introduces a
non-linearity into the sliding motion which can lead to
multiple sliding velocities for the same large-scale ice
stream geometry, and that switches between these velocities
can cause surging behavior. INDEX TERMS: 1827
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1. Introduction

[2] Short wavelength bed topography plays an important
role in generating drag on glaciers sliding over a hard,
undeformable bed [Paterson, 1994, chapter 7]. If the bed
is deformable and short-wavelength roughness is easily
eroded, drag generation is suppressed. However, assemblies
of larger obstacles such as drumlin fields may still provide
significant resistance to flow over a weak deformable bed,
particularly at high sliding velocities [Schoof, 2002b]. The
cores of bed features of this type often show little or no large-
scale deformation [e.g., Sharpe, 1987], indicating that they
were stationary features rather than being moved by the ice.
[3] Sliding over obstacles whose wavelengths are com-

parable with ice thickness differs from classical hard-bed
sliding [Nye, 1969] because of the presence of the upper,
free boundary of the ice. After an initial transient, rapid ice
flow over this type of bed topography leads to a steady
surface expression in the form of a standing wave
[Gudmundsson et al., 1998], whose shape depends not only
on the bed obstacles but also on the bulk flow velocity of
the ice. In turn, the standing wave affects the stress field at
the bed and hence the sliding velocity. In this paper, we
demonstrate that the intrinsic non-linearity of this mecha-
nism can lead to more than one surface wave being stable
for a given driving stress, corresponding to more than one
feasible bulk flow velocity. We also show that the conse-
quent multi-valuedness in the ice flux-driving stress rela-
tionship can lead to surging behavior in an ice stream.
[4] Temporally and spatially varying flow velocities in

glaciers and ice sheets, and surging behavior in particular,

are well-documented [e.g., Kamb et al., 1985; Retzlaff and
Bentley, 1993] and are typically thought to be associated
with switches in basal hydrology [Kamb, 1987; Fowler,
1987], thermal feedbacks [van der Veen and Whillans,
1996; Raymond, 2000; Tulaczyk et al., 2000; Hindmarsh
and LeMeur, 2001] or changes in the buttressing effect of
ice shelves resulting from increased calving [Schmeltz et al.,
2002]. The purpose of the present paper is to illustrate a
previously unrecognised, purely mechanical phenomenon
that causes flow variability.

2. The Model

[5] Themodel used here [Schoof, 2002a, 2002b] employs a
multiple scales expansion [e.g.,Holmes, 1995] to separate the
ice flow problem into two parts. An ‘inner’ problem in terms
of the coordinates (x, z, t) (position and time scaled with ice
thickness and the associated convective timescale) quantifies
the generation of drag by a local ice flowover bed topography.
The evolution of the ice stream as a whole is tracked by an
‘outer’ problem in terms of the coordinates (X, T) (down-
stream distance and time scaled with ice stream length and the
corresponding convective time scale, respectively). Given a
typically small aspect ratio � for the ice streamwehave (X,T) =
�(x, t). Importantly, in the asymptotic limit �! 0, the two sets
of coordinates can be treated as independent.
[6] We assume further that typical bed slopes v are small:

the scalings below put n2 = �. Consequently our model does
not deal with large-amplitude bed topography (e.g., moun-
tain ranges), and requires sliding to be fast compared with
internal deformation [Schoof, 2002b].
[7] The dimensionless inner problem of finding the local

variations u = (u, w) about a regional mean plug flow
velocity U in the x-direction, and the corresponding pressure
variations p about a mean field, can be written as [Schoof,
2002a, chapter 4]

r2u�rp ¼ 0; r � u ¼ 0; on 0 < z < S; ð1Þ

uz þ wx ¼ 0; w ¼ Uhx; on z ¼ 0; ð2Þ

uz þ wx ¼ 0; d ¼ p� 2wz; w ¼ dt þ Udx; on z ¼ S: ð3Þ

Here, r = (@/@x, @/@z) and subscripts denote partial
derivatives, viz. uz = @u/@z etc. S is a regionally smoothed
ice thickness, while h and d stand for local bed topography
and the corresponding surface wave, respectively.
[8] Importantly, S depends only on (X, T) and U depends

on (X, t, T) but not on x. The relation determining sliding
velocity U enforces horizontal force balance:

�SSX ¼ h p� 2wzð Þjz¼0hxi þ tb Uð Þ; ð4Þ
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where h�i is a spatial average over the inner distance x, and
tb(U) is a sliding law describing drag due to flow over
small-scale bed roughness [Paterson, 1994, chapter 7]. S
evolves as

ST þ �USð ÞX¼ b Xð Þ; ð5Þ

where �U = limt!1 t�1
R t
0
U(X, t, T) dt denotes an average

over the short timescale, while b(X) is an accumulation rate,
assumed given.
[9] The equations above can be motivated without their

lengthy formal derivation: Equations (1), (2) and (4) are the
Nye-Kamb model for sliding in the absence of regelation
[Nye, 1969; Kamb, 1970]. The boundary conditions
(3) simply introduce an upper free surface which is stress-
free (first and second equalities of (3)) and satisfies a
kinematic boundary condition (third equality of (3)).
Equation (5) is the usual mass conservation equation for a
plug flow. In common with Nye-Kamb sliding theory, the
model uses a constant viscosity rather than Glen’s law for
ice [Paterson, 1994, p. 91]. Our results therefore indicate
the possibility of a new mechanism for ice stream variability
rather than provide a quantitative proof.

3. A Multi-Valued Geometry-Flux Relationship

[10] The inner problem (1)–(4) provides a relationship
between the flux S �U and the smoothed geometry of the ice
stream defined by S(X, T). We consider only the simplest
case of a sinusoidal bed h(x) = cos(x) with no drag
generated by small-scale roughness, so tb  0. These
assumptions illustrate the essential features of the model.
[11] If we seek solutions for the surface wave of the form

d(x, X, t, T) = a(X, t, T)cos(x) + b(X, t, T)sin(x), the inner
problem reduces to

at ¼ Ub� F1 Sð Þa ð6aÞ

bt ¼ F2 Sð ÞU � Ua� F1 Sð Þb ð6bÞ

td ¼ G1 Sð ÞU þ G2 Sð Þb ð6cÞ

where td = �SSX. The functions F1, F2, G1 and G2 arise
from a Fourier transform solution of (1)–(4) [Schoof,
2002a, section 4.5]:

F1 Sð Þ ¼ sinh2 S

2 sinh S cosh S þ Sð Þ ;

F2 Sð Þ ¼ S cosh S þ sinh S

sinh S cosh S þ S
;

G1 Sð Þ ¼ sinh2 �S2

sinh S cosh S þ S
;

G2 Sð Þ ¼ S cosh S þ sinh S

2 sinh S cosh S þ Sð Þ :

S and hence td, F1, F2, G1 and G2 depend only on the outer
coordinates X and T. Consequently, (6) is a set of coupled
non-linear ordinary differential equations for a and b with t
as the independent variable and td, F1, F2, G1 and G2 acting
as parameters that are independent of t. The non-linearity of
these equations comes about through the dependence of
the sliding velocity U on the surface wave coefficient b

through (6c). This dependence sets our analysis apart from
that of Gudmundsson [2003]: In his work, the bulk flow
velocity U is prescribed at leading order by a sliding law,
and the effect of topography-induced ‘form drag’ appears
only at higher order. By contrast, bed and surface
topography play a leading-order role in determining U in
our model, and cause the non-linearity that is absent in other
models.
[12] The large t behaviour of (a, b) determines the final

shape of the surface wave and the time-average �U through
(6c). An analysis of the (a, b) phase-plane indicates that the
system (6) relaxes to a steady state at large t. Hence a
standing wave is formed and U approaches a limit as t !
1, whence �U (X, T) = limt!1U(X, t, T). Schoof [2002a,
section 4.5.1] shows that the system (6) can have either one
or three critical points (where at = bt = 0, see Figure 1),
corresponding to U given by the real roots of

td ¼ G1U þ F1F2G2U

F2
1 þ U 2

: ð7Þ

In the case of three roots, only the smallest and largest
values of U correspond to stable critical points, which will
be approached as t!1 for suitable initial values. The third
critical point is then unstable, and does not correspond to a
steady surface wave which will be formed in practice. By
contrast, the critical point corresponding to a single root of
(7) is always stable.
[13] For those combinations of S and �SX for which

(7) (into which S and �SX enter through td, F1, F2, G1 and
G2) has three roots, there are two attainable flux states S �U ,
corresponding to the two stable critical points of (6).
Figure 2 shows how the values S �U corresponding to stable

Figure 1. Phase-plane for (6) when td = 0.25, S = 1
(panel a) and td = 0.25, S = 1.25 (panel b), with the
direction of phase-paths indicated by arrows. Nullclines are
plotted as heavy solid lines for at = 0 and as heavy broken
lines for bt = 0. Intersections of nullclines are critical points,
labelled P1–P3. In (a), P1 and P3 are stable while P2 is not.
In (b), P1 is stable.
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fixed points of (6) depend on surface slope �SX for a variety
of ice thicknesses S. This figure demonstrates that flux is
usually an increasing function of �SX, so (5) is apparently a
non-linear diffusion problem, which renders it similar to
classical shallow-ice theory [Hutter, 1983]. However, for
sufficiently small values of the ice thickness S and the
surface slope �SX, the relationship between flux and surface
slope is multi-valued. This renders the problem essentially
different from ordinary diffusion.

4. Solution of the Ice Stream Problem

[14] Before proceeding with a numerical solution of the
outer problem, some minor alterations are required. In order
to avoid spatial discontinuities in velocity U, we include
longitudinal stresses on the outer length scale. Retention of
higher order terms motivates writing td = 4�(SUX)X � SSX,
where the additional term is a depth-integrated mean lon-
gitudinal stress. Equation (6) becomes

4� SUXð ÞX�G1U ¼ G2bþ SSX ð8aÞ

at ¼ Ub� F1a ð8bÞ

bt ¼ F2U � a� F1b: ð8cÞ

The original inner problem (6) can be retrieved by ignoring
the O(�) term in (8a). However, this is a singular
approximation, which becomes invalid where U changes
rapidly with X. Steady states of (8) obey an elliptic equation
of the type used to model shelf-like ice streams [MacAyeal,
1989]. Importantly, there can be multiple solutions, not all
of which need to be stable.
[15] We assume that there is a symmetric ice divide at

X = 0, so U = SX = 0 there. In order to avoid the singularity

associated with S = 0 at the margin, we assume that there is
a calving front at a position X = Xf (T) where S takes a small
constant value Sf. Mass conservation then requires

dXf

dT
¼ ST

SX

�
�
�
�
X¼X�

f

:

This device can be motivated by assuming that the ice
stream ends in a shallow lake, where it calves when its
thickness is close to floatation [cf. van der Veen, 1996; Vieli
et al., 2001]. Importantly, the results obtained are not
sensitive to Sf, so long as Sf is small. At X = Xf, we apply the
usual stress boundary condition for a calving front at
flotation [Morland, 1987], UX = (1 � r)Sf /(8�r) in
dimensionless terms. Here r is the ratio of ice to water
density.
[16] Equations (5) and (8) with at = bt = 0 are first

transformed to a fixed spatial domain and then solved by a
finite difference scheme with an implicit time step. We
assume that switches from fast to slow sliding or vice versa
correspond to situations where a stable, steady solution of
(8) close to the solution at the previous T-timestep does not
exist. One disadvantage of our insistence on using multiple
scales in time is that the transition from one flow mode to
the other (which presumably occurs on the inner time scale)
cannot be resolved. A preferable approach using matched
asymoptotics will be explored in future work.
[17] Results for one particular choice of parameters are

shown in Figure 3. Clearly, the ice surface oscillates

Figure 2. Flux S �U as a function of negative surface slope
�SX for a number of ice thicknesses S, attainable flux values
— corresponding to stable critical points of (6) are plotted
as solid lines. Unattainable values — corresponding to
unstable critical points — are plotted as dotted lines. Note
that Nye-Kamb sliding is retrieved in the large S limit (not
shown here).

Figure 3. Limit-cycle surge pattern for ice stream with � =
0.01, b(X) = 1/(1 + X2) � 1/2 (which changes from
accumulation to ablation at X = 1), r = 0.9 and Sf = 0.01. In
panel (a) the surface profile S(X, T) during the surge part of
the cycle is shown at T-intervals of 0.02. In panel (b) the
slow retreat part of the cycle is shown at T-intervals 0.04.
The duration of the surge cycle is 0.92. The sharply concave
surface profile which develops near the ice divide in the
surge phase occurs because the ice divide has to remain on
the slow flux branch, while the remainder of the ice stream
is on the fast branch.
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between two profiles. The ice stream switches from a slow
retreat to a rapid advance when it is short and steep, while
the reverse transition occurs when the ice stream is
extended and shallow. Numerical experiments further in-
dicate that the profiles at which these switches occur are
independent of the initial conditions, a circumstance rem-
iniscent of limit cycle solutions of ordinary differential
equations [Coddington and Levinson, 1955]. Multi-valued
relationships between surface geometry and flux underpin
a number of models of glacier and ice stream surging
behavior [Fowler, 1987; Greenberg and Shyong, 1990;
Fowler and Schiavi, 1998]. The surge mechanisms in these
models are different from ours, but the underlying dynam-
ics are mathematically similar, as they can all be thought
of as spatially extended relaxation oscillations.

5. Conclusions

[18] The study of a leading-order model for the flow of an
ice stream over an assembly of bed obstacles whose wave-
lengths are comparable with ice thickness and whose
amplitudes are sufficient to cause leading-order drag has
indicated that the formation of standing waves at the ice
stream surface can lead to multiple flow velocities for the
same large-scale ice stream geometry. Each velocity corre-
sponds to a different surface wave configuration. Regular
oscillations, or surges, in the ice stream were shown to
result from this multi-valuedness in the relationship between
ice velocity and surface geometry, which occurs for suffi-
ciently small surface slopes (or sufficiently large bed slopes)
and at small ice thicknesses.
[19] A number of open questions still await a satisfactory

answer. We have only considered the simplest case of a
sinusoidal bed in this paper, whereas actual bed topography
is much more complicated. The presence of additional
Fourier modes will affect the relationship between flux
and geometry derived in section 3, as will the possible
formation of cavities. In addition, the effect of a non-linear
rheology [Paterson, 1994, chapter 5] on the generation of
drag by finite-wavelength bed obstacles remains to be
resolved. The process considered in this paper will also
interact with other processes usually thought to be respon-
sible for ice stream variability and surging behavior, such as
thermal feedbacks in the sliding behavior of the ice stream.
For instance, when a change in surface wave configuration
leads to a transition from fast to slow flow, heat generation
at the bed will be reduced and flow velocities will be
reduced further, possibly leading to a complete shutdown
of the ice stream. Basal melting due to ice thickening will
have to recommence before a new surge cycle can be
started.

[20] Acknowledgments. Financial support from a Killam postdoctoral
research fellowship at UBC is gratefully acknowledged.
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