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Ice-stream shear margins are the lateral boundaries of narrow, fast-flowing bands of
ice within an ice sheet. We develop a theory for the migration of shear margins over
time driven by viscous dissipation of heat within the ice, focusing on widening of
the ice stream. The location of the margin is modelled as a transition from a cold to
a temperate ice-sheet bed, and simultaneously as the transition from no slip to free
slip at the same location. The temperature field in the ice is affected by intense shear
heating as well as by the migration velocity of the margin (i.e. by the widening rate
of the ice stream); if migration is too fast, there is little time for the ice to warm
up and the margin remains cold, causing the bed to freeze. This suppresses widening.
Conversely, if the migration speed is too slow, the ice in the margin warms up,
causing the bed on the far side of the cold–temperate transition to reach the melting
point, and migration to speed up. Using a Wiener–Hopf method, we show that for a
given far-field shear stress, geothermal heat flux, and ice geometry, there is a single
migration velocity that balances the two effects and permits widening at a steady rate.
This velocity increases with the far-field lateral shear stress imposed by the ice stream,
which controls shear heating in the margin. Our results also indicate that (i) a region
of temperate ice must form in the margin, and that (ii) lateral advection of ice may
play a significant role in controlling migration speeds.

Key words: contact lines, ice sheets, solidification/melting

1. Introduction
Ice streams are relatively narrow bands of fast flow within a larger continental

ice sheet. A typical ice stream might be a kilometre thick, tens of kilometres
wide and hundreds of kilometres long, while ice sheets can measure thousands of
kilometres across. Despite their limited size, ice streams play an important role in
the mass budget of ice sheets. In Antarctica, ice streams are estimated to account
for over 80 % of the ice discharged from the continent (Bamber, Vaughan & Joughin
2000). Understanding their dynamics is therefore crucial to predicting future ice sheet
behaviour as well as interpreting the geological record of ice sheet evolution.

Fast flow can result from several mechanisms. Pronounced troughs in underlying
bedrock can channelize flow by permitting a greater amount of vertical shear. Greater
ice thicknesses in these troughs also helps to insulate the lower layers of ice, allowing
them to become warmer and less viscous. In some cases, impurities in the ice can
also contribute to lower ice viscosities, and crystal alignment within the ice can
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similarly facilitate rapid shearing. However, the most dramatic spatial variations in
ice flow velocities are associated with sliding at the base of the ice, and we focus
exclusively on this mechanism here. Rapid sliding at the base is typically associated
with the bed reaching the melting point and the presence of liquid water below the
ice. This facilitates slip at the ice–bed interface as well as mechanical failure in
underlying sediments (Blankenship et al. 1987; Kamb 1991; Iverson, Hooyer & Baker
1998; Tulaczyk, Kamb & Engelhardt 2000a; Alley & Bindschadler 2001). Sliding can
account for all of the surface velocity of some ice streams (Engelhardt & Kamb 1997),
and allows much faster ice flow than vertical shearing alone.

Ice streams often have sharp boundaries, with abrupt transitions from rapid to
slow ice flow over a few kilometres (Echelmeyer et al. 1994; Harrison, Echelmeyer
& Larson 1998). These lateral boundaries are referred to as shear margins. There
may be situations in which steep-sided bedrock walls confine an ice stream and
prevent its margin from moving, but in general, margins can migrate over time. Direct
observations as well as indirect geophysical evidence show that the width of ice
streams can evolve significantly on centennial time scales (Jacobel et al. 1996; Joughin
et al. 2002; Siegert et al. 2004; Hulbe & Fahnestock 2007), but the processes involved
are poorly understood.

A change in ice-stream width can have significant consequences for ice discharge.
Assume a power-law rheology for ice (‘Glen’s law’, see Cuffey & Paterson 2010),
which sets τij = BD1/n−1Dij, where τij is deviatoric stress, Dij strain rate and D its
second invariant. B and n are constants, with n ≈ 3. Then discharge scales as ice-
stream width to the power (n + 2) provided the ice-stream flow is dominated by
lateral shearing (Raymond 1996; van der Veen & Whillans 1996; Tulaczyk, Kamb &
Engelhardt 2000b), as has been verified observationally for some ice streams on the
Siple Coast of West Antarctica (Echelmeyer et al. 1994; Bindschadler et al. 1996;
Joughin et al. 2002). Such a sensitive dependence of discharge on width indicates the
need for a physics-based model for margin migration. However, no such model exists
at present.

The sharp transition from slow to fast motion in ice-stream shear margins must
correspond to an equally sharp transition in the properties of the ice sheet bed. High
basal water pressure facilitates slip, and strong spatial variations in water pressure can
therefore lead to an abrupt transition from rapid sliding where water pressure is high
to slow or zero slip where water pressure is low. The models of ice-stream formation
in Fowler & Johnson (1996) and Sayag & Tziperman (2008) are based on this notion.
Alternatively, regions of high basal water pressure may be adjacent to parts of the bed
that are frozen altogether. In fact, Fowler & Johnson’s (1996) model predicts that the
bed must freeze in some areas (see Dı́az, Muñoz & Schiavi 2007). In that case, a shear
margin can be expected to form at the transition between temperate and frozen parts of
the bed, and this is the case we consider here.

The abrupt change from fast to slow flow generates large shear stresses and
heating rates in the ice (Echelmeyer et al. 1994). Previous studies of shear margins
(Raymond 1996; Jacobson & Raymond 1998; Schoof 2004) have focused on this
effect, quantifying the effect of changes in the strength of the bed across the
margin. Here, we aim to take this work further and develop a description of how
the temperature response to shear heating controls margin migration. We focus
exclusively on mechanisms that cause the ice stream to widen, so ‘migration’ here
means movement of the margin into the slowly flowing ice surrounding the ice stream.
We present a theory for the shrinkage of an ice stream in a separate paper (Schoof, in
preparation).
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Given the lack of observational constraints on the processes involved, we make a
number of simplifying assumptions. These may need to be dispensed with in future;
for now, our goal is to construct a minimal model that is capable of describing margin
migration in a self-consistent way, in the expectation that this will help to identify
the key processes involved. Our central assumption is that the margin corresponds to
a transition from frozen to temperate bed, as well as from no slip to free slip. We
will refer to the point at which this occurs as the ‘transition point’ throughout this
paper. Similar mechanical assumptions have been made in Hutter & Olunloyo (1980)
and Barcilon & MacAyeal (1993) for different geometries, and in Schoof (2004) for
the shear margin geometry we will study below. As in those previous studies, we also
restrict ourselves to a Newtonian rheology for ice, corresponding to n = 1 in Glen’s
law. A Newtonian rheology also requires a constant B in Glen’s law, ignoring any
temperature dependence of ice viscosity and hence any possible feedbacks between
warmer ice and higher shearing rates.

Shear heating in the margin tends to warm the ice. By contrast, the effect of faster
migration is to allow less time for the ice to warm up, as the margin is continually
advancing into colder ice outside the ice stream. As a result, there exists a trade-off.
If the margin were to migrate too rapidly, the ice would fail to warm up sufficiently.
The bed on the temperate side of the transition point would start to freeze over, and
further migration would be curtailed. On the other hand, if the margin were to migrate
too slowly, heat would build up around the transition point and the temperature of the
bed on the frozen side of the transition point would eventually reach the melting point.
Migration would then need to speed up to keep pace with this warming of the bed.
Steady migration velocities must therefore avoid both excessive accumulation of heat
due to shear heating, and excessive cooling due to margin migration into colder ice.
The theory we present in this paper shows that there is a single migration velocity that
balances the two effects for a given shear heating rate.

The basic model for velocity and temperature is set out in § 2. We consider two
constraints on the temperature field near the transition point between frozen and
temperate bed (§ 3): the temperature on the frozen side of the transition point must
remain below the melting point; and the bed on the temperate side of the transition
point must not be in the process of freezing over. We show that these two constraints
together determine a unique physically acceptable migration rate (§ 4). This rate
depends on the magnitude of shear heating in the margins due to stresses imposed
by the ice stream (§ 5). One of the implications of this result is that margin migration
may be subject to a positive feedback, in which a widening of the ice stream leads to
more shear heating in the margin and hence to faster widening (§ 6). Anticipating that
this does not happen universally in ice streams, we also discuss some of the limitations
and and necessary future extensions to the model in § 6.

Some of the material below is necessarily quite mathematical. The paper is arranged
such that the more difficult material in §§4.2–4.3 can be omitted by readers interested
primarily in the formulation of the model and the results rather than the details of the
solution procedure.

2. Model
We consider the same geometry as in Schoof (2004), but focus on only one

of the shear margins. That is, we model a parallel-sided inclined slab of ice of
thickness H, with the x-axis oriented across the slab, and the y-axis pointing upwards
perpendicularly to the slab (see figure 1). Assume that all dynamical quantities
(such as ice velocity, pressure, temperature etc.) are independent of position in the
downslope direction, and therefore depend only on (x, y). Consequently, the only non-
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FIGURE 1. The geometry of the domain. Ice flow is into the page, with the ice ridge to the
left and the ice stream to the right. Flow is driven by a lateral shear stress imposed from the
right by the ice stream. The thick line at the bed indicates temperate (unfrozen) conditions,
while the circle is the transition from frozen to temperate bed. In the stationary (x, y) frame
shown in (a), the transition point xm(t) moves to the left at velocity V , while in the travelling
wave frame with coordinates (ξ, y) shown in (b), the transition point is fixed at (0, 0) but
both ice and bedrock move transversely to the right at velocity V . This appears in the heat
flow problem as an advection term, similar to the advection due to shearing flow in ice in
Echelmeyer et al. (1994) and Jacobson & Raymond (1998).

zero velocity component is oriented in the downslope direction, and will be denoted
by u(x, y, t). Treating the ice as Newtonian with viscosity η, we model ice velocity as
satisfying the appropriately reduced form of Stokes’ equations,

η(uxx + uyy)= 0 for 0< y< H, (2.1a)

ηuy = 0 on y= H, (2.1b)

ηuy = 0 on y= 0, x> xm(t), (2.1c)

u= 0 on y= 0, x< xm(t), (2.1d)

ηux→
{
τs

0
as x→+∞,
as x→−∞, (2.1e)

where subscripts denote partial derivatives.
Unlike in Schoof (2004), the model includes only one margin within the domain,

assuming that the ice stream is much wider than the ice thickness. The bulk of the
ice stream is represented by imposing a finite ‘lateral’ shear stress τs as a far-field
boundary condition. This lateral shear stress scales as ρgW sinβ, where β is the angle
of inclination of the ice stream to the horizontal, and W � H is ice-stream width.
Hence τs is much larger than the typical driving stress ρgH sinβ generated in the
margin itself, which is why we omit the gravitational body force in (2.1a).

Equations (2.1c) and (2.1d) correspond to an abrupt transition from no slip to the
left of the transition point xm(t) to free slip on the right. We assume that this change
in boundary conditions is associated with a switch in thermal conditions at the bed, so
xm(t) is the position at which the bed goes from being temperate (at the melting point)
to being frozen. In addition, we assume that friction on the temperate part of the bed
is negligible. Again, this can be motivated by scaling considerations. In order for the
bulk of the ice stream to be sliding rapidly, friction at the bed must be comparable
to (or less than) the driving stress ρgH sinβ. If friction in the shear margin remains
comparable in magnitude to friction under the bulk of the ice stream, then it follows
that this will be much smaller than the stress scale τs ∼ ρgW sinβ imposed by the bulk
of the ice stream on the shear margin. Note that one might expect such comparable
friction values if friction is controlled by pore pressure in subglacial sediment and
if the bed under the shear margin is hydraulically well-connected to the ice stream,
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so that pore pressures are therefore similar under the ice stream and under the shear
margin.

In reality, one would probably not expect a perfect free slip to no slip transition; if
the frozen ice–bed contact has a finite yield stress, then there will be at least a small
zone of yielded bed on the frozen side, which could in principle be modelled using the
method described in Schoof (2004). In keeping with our aim of a minimal model, we
leave such additional processes for future research.

If the transition point xm(t) is the location at which the bed goes from temperate
to frozen, then we must also model the temperature field T(x, y, t). To simplify
matters, assume that the ice stream and the underlying bedrock have the same thermal
conductivity κ , and bulk heat capacity ρc, in the expectation that this will not make a
qualitative difference to our results. Our geometry now leads to the following heat flow
problem:

ρcTt − κ(Txx + Tyy)= η(u2
x + u2

y) for 0< y< H, (2.2a)

ρcTt − κ(Txx + Tyy)= 0 for y< 0, (2.2b)

T = Ts on y= H, (2.2c)

T+ = T− on y= 0, (2.2d)

−κT+y =−κT−y on y= 0, x< xm(t), (2.2e)

T = Tm on y= 0, x> xm(t), (2.2f )
−κTy ∼ qgeo as y→−∞. (2.2g)

In addition, lateral heat flux −κTx must also vanish as x→±∞. Here, Ts is a constant
surface temperature, Tm is the melting point of ice at the bed, and qgeo is an imposed
geothermal heat flux. The superscripts + and − in (2.2e) indicate limits taken as the
bed is approached from above and below, respectively. Physically, we have conductive
heat flow in ice and bedrock, with heat generated by shear heating in the ice only.
The temperature at the ice surface is fixed, while at the bed, different boundary
conditions apply on the frozen and temperate sides of the transition point. On the
frozen side, temperature and heat flux are both continuous but otherwise unspecified.
On the temperate side, temperature is at the melting point. An important simplification
that arises from our geometrical assumptions is that there is no advection of heat in
(2.2a). In real ice-stream shear margins, there tends to be lateral inflow of ice that will
lead to non-zero advective heat flux. We will discuss the implications of ignoring this
flux in § 6.

Below, we assume that the time scale on which the temperature field in the margin
adjusts can be treated as short compared with the time scale over which the lateral
shear stress τs changes. This allows us to look for travelling wave solutions to
(2.1)–(2.2). In doing so, we assume that the temperature field in the ice retains
the same form relative to the moving transition point, at least on the time scale in
question.

Define a travelling wave coordinate

ξ = x+ Vt, (2.3)

so that V is the velocity at which the margin migrates outward from the ice stream
into the frozen bed. In this paper, we consider only the case V > 0, corresponding to
a widening ice stream. The case of inward migration is dealt with in a separate paper.
The main difference is that inward migration potentially requires a finite amount of
water contained in the bed to freeze (see also appendix B), whereas here we allow
sliding to commence as soon as the melting point is reached. That is, we assume that
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only a very small amount of melting may be required to start sliding but a much larger
amount of freezing may potentially be required to stop sliding.

Assume that u and T depend on x and t only through ξ , and that xm(t) = −Vt.
Then ξ = 0 represents the temperate–frozen transition in the moving coordinate frame.
Our aim then becomes to identify how the margin migration velocity depends on the
forcing parameters such as τs, qgeo, Tm − Ts and H.

Equation (2.1) remains unchanged under this coordinate change, except that
derivatives with respect to x are replaced with ξ -derivatives, and that x < xm becomes
ξ < 0. The same is true for (2.2), except that (2.2a) and (2.2b) become

ρcVTξ − κ(Tξξ + Tyy)= η(u2
ξ + u2

y) for 0< y< H, (2.4a)

ρcVTξ − κ(Tξξ + Tyy)= 0 for y< 0. (2.4b)

The model as posed above is in fact insufficient to determine V: it lacks two
additional physical constraints. First, we have assumed that the no-slip condition (2.1d)
corresponds to a frozen bed, and consequently we have to ensure the bed to the
left of xm is really frozen. An obvious constraint is therefore to impose T < Tm on
the frozen side (ξ < 0). In addition the ice-stream bed on the temperate side (ξ > 0)
should not be in the process of freezing if the margin is migrating to the left (i.e. into
the frozen bed, with V > 0). This should be the case at least close to the transition
point; we expand on this further in the next section and appendix B, where we
show that, if freezing occurs close to the transition point, then migration must be
to the right (i.e. into the ice stream). To ensure migration to the left, we require
a non-negative net heat flux into the bed immediately to the right of the transition
point. If we continue to use superscripts + and − to denote limits taken as the ξ -axis
is approached from above and below, we can express this condition mathematically
as κ(Ty (ξ, 0)+−Ty (ξ, 0)−) > 0 at least for small positive ξ to ensure migration to
the left. This corresponds to either zero net heat flux into the bed, or active melting
at the ice–bed interface. Any water that is produced must then either be stored in
an unfrozen layer of sediment at the bed, or evacuated by a drainage system at the
ice–bed interface; the assumption of free slip above is tantamount to saying that this
storage and drainage of water happens without affecting the flow of the ice in the
shear margin.

We will see next that, taken together, these constraints impose restrictions on the
form of possible singularities in heat flux near ξ = 0. Subsequently, we see in § 4 that,
for a given temperature difference Ts − Tm, geothermal heat flux qgeo and thickness H,
these restrictions then determine a unique migration velocity V for sufficiently large
shear stresses τs, and show how to compute this.

3. The near-transition-point region
Although we will later provide a closed-form solution to (2.1), it is instructive to

look purely at the local behaviour of solutions near the transition point at the origin.
Defining plane-polar coordinates through ξ = r cos(θ), y = r sin(θ), (2.1a), (2.1c) and
(2.1d) become

1
r
(rur)r +

1
r2

uθθ = 0, uθ(r, 0)= 0, u(r,π)= 0. (3.1)

The viscous dissipation rate must remain locally integrable, which constrains how
singular the velocity field can be. The leading-order solution is then

u(r, θ)= a0r1/2 cos(θ/2)+ O(r3/2). (3.2)
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Note that this corresponds to a singular stress field near r = 0, where |∇u| ∼
a0/(2r1/2), while the velocity u remains bounded. The strength of the singularity is
dictated by a0, and this cannot be determined from the local problem alone. Instead,
the far-field flow must be solved for. We will return to this in § 4.

Next, consider the leading-order local form of (2.4) with (2.2f ) and (2.2e). Over
sufficiently short length scales, the advection terms in (2.4) can be neglected.
Assuming that a0 6= 0 (which as we will see in § 4 is the case for (2.1)), we then
have (letting Tm = 0 without loss of generality)

−κ
[

1
r
(rTr)r +

1
r2

Tθθ

]
= ηa2

0

4r
for 0< θ < π, (3.3a)

−κ
[

1
r
(rTr)r +

1
r2

Tθθ

]
= 0 for π< θ < 2π, (3.3b)

T = 0 on θ = 0, (3.3c)

T+ − T− = 0 on θ = π, (3.3d)

−κT+θ + κT−θ = 0 on θ = π. (3.3e)

Subject to heat fluxes remaining locally integrable at the bed, this has solution (see
appendix A)

T = b0r1/2 sin(θ/2)+ c0r sin(θ)+ Th(r, θ)+ O(r3/2), (3.4a)

Th(r, θ) :=



−ηa2
0

4κ

[
r(1− cos(θ))+ 1

π
(rθ cos(θ)+ r log(r) sin(θ))

]
for 0< θ < π,

−ηa2
0

4κ

[
−2r cos(θ)+ 1

π
(rθ cos(θ)+ r log(r) sin(θ))

]
for π< θ < 2π.

(3.4b)

It is straightforward to verify that this solution satisfies (3.3). As before, the
coefficients b0 and c0 cannot be determined from the local problem alone, and the far-
field temperature must be solved for. This becomes essential in solving for migration
velocity V in the next section.

The solution (3.4) shows that there are two competing effects in operation near the
transition point (figure 2). The first is the effect of the switch in boundary conditions,
where a boundary at constant temperature (the melting point) is immediately adjacent
to a region across which fluxes are continuous. This geometry is essentially that of a
‘cooling fin’, i.e. a narrow plate of a fixed, elevated temperature inserted into a colder
medium (Carslaw & Jaeger 1959). This geometry in general leads to a singular heat
flux: with b0 6= 0, the temperature gradient behaves as |∇T| ∼ b0/(2r1/2). As before,
the singularity strength b0 is determined by the far-field temperature field, and it is
therefore possible for b0 to vanish under very specific conditions. We return to this in
§ 4. Note also that b0 and c0 both describe the effect of the cooling-fin geometry on
its own, and do not represent the effect of near-field shear heating. The strength of
the latter is determined by a0, and appears in the solution through the inhomogeneous
term Th.

This shear heating rate is the second effect at work here. Note that the rate of shear
heating in (3.3a) is singular. However, the resulting inhomogeneous term Th is clearly
bounded, and in fact leads to a weaker heat flux singularity than the cooling fin,
with |∇Th| = O(log r). Therefore the cooling-fin effect is dominant provided b0 6= 0, in
which case Th only appears at higher order.
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FIGURE 2. The solution (3.4) with c0 = 0 and ηa2
0/κ = 1, ignoring the O(r3/2) correction

(which in general will be significant at sufficient distances from the origin, and change the
shape of isotherms appreciably there), for: (a) b0 = 0, (b) b0 = 0.4, (c) b0 = −0.4. Contour
interval is 0.05, and T > 0 is shown shaded in grey; the T = 0 contour is a heavy black curve.
The transition point is marked by a solid circle at the origin, and the boundary y = 0, ξ > 0
is shown as a heavy solid line. It is clear that the solution in (b) violates the stipulation that
T < 0 at y = 0, ξ < 0. Hence the transition from slip to no slip cannot be located at ξ = 0 as
assumed. Less obvious is that the bunched isotherms near the origin in (c) indicate a heat flux
singularity that causes rapid heat loss from the temperate part of the bed, and hence freezing.
The only viable local solution that can correspond to widening is (a).

To investigate the trade-off between these two effects further, assume for now that
the cooling-fin geometry leads to a heat flux singularity, with b0 6= 0. We can then
compute the temperature T(r,π) ∼ b0r1/2 − ηa2

0r/(4κ) + O(r3/2) to the left of the
transition point. We require that temperature at the bed for ξ < 0 (θ = π) be negative:
otherwise, the bed is not frozen locally, and we would not expect the no-slip boundary
condition in (3.1) to hold. This leads to the conclusion that we must have b0 6 0.
However, we can also compute the net heat flux into the bed on the temperate side
ξ > 0 of the transition point:

κ(Tθ(r, 0)− Tθ(r, 2π))/r ∼ κb0r−1/2 + O(r1/2). (3.5)

With b0 < 0, this amounts to a negative heat flux into the bed; or in other words, to
freezing of the bed.

In fact, the freezing rate is singular near the transition point, and this must result
in the migration of the transition point to the right. A sketch of the relevant theory is
given in appendix B; a more detailed treatment is given in a separate paper (Schoof, in
preparation).

As our aim in the present paper is to study the widening of ice streams with V > 0,
we are led to conclude that b0 can neither be negative nor positive. Hence we must
have b0 = 0, and a logarithmic heat flux singularity at the origin (though heat flux into
the temperate side of the bed at θ = 0 remains bounded). Recall that b0 is determined
by the far-field behaviour of T , which in part depends on the migration velocity V .
Below, we construct a Wiener–Hopf solution to the full problem consisting of (2.1)
and (2.4) with (2.2c)–(2.2g) such that the local behaviour near the origin corresponds
to b0 = 0. As we will see, this constraint defines V implicitly as a function of the
imposed forcing parameters, with V an increasing function of the applied lateral shear
stress.

There is one major caveat to this procedure, however. If we set b0 = 0, then the
leading-order behaviour near the origin in the ice (0< θ < π) is given by

T(r, θ)∼−ηa2
0

4κ
r

[
(1− cos(θ))+ 1

π
(θ cos(θ)+ log(r/r0) sin(θ))

]
, (3.6)
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where r0 = exp(4c0κ/(ηa2
0)). From this, it is straightforward to see that T(r, θ) > 0 for

small enough r and angles θ ∈ (0,π/2). Still ignoring higher-order terms (which may
become important for finite r ∼ r0), the T = 0 isotherm is given by

r|T=0 = r0 exp
(
−π− (π− θ) cos(θ)

sin(θ)

)
, (3.7)

and (3.6) predicts positive temperatures for r < r|T=0. This is physically inconsistent
as we expect T 6 0 in the ice (ignoring for now any pressure-induced variations in
melting point). This leads us to conclude that the actual local behaviour near the origin
cannot in fact be described by (3.3) (or (2.4)) in a complete model: instead of a region
of positive temperatures, there must be at least a small a region of ‘temperate’ ice. In
the temperate ice, the temperature is then at the melting point, T = 0, and instead of
pure ice, a partial melt with a non-zero fraction of liquid water must be present (e.g.
Fowler 2001). Dissipation of heat in this region is then balanced by the production of
further liquid, which can drain through connected veins between individual ice crystals
driven by gravity and viscous compaction.

We ignore this complication in the remainder of the paper: implicitly, we are
assuming that the formation of temperate ice does not significantly change the
distribution of subtemperate ice (where T < 0) or the heat fluxes in the subtemperate
ice. This allows us to develop a largely analytical approach below, but is unlikely to
be valid. In effect, in regions where T > 0 in our model, T is then not an actual
temperature variable but indicates a positive moisture content, and persisting with the
heat equation (2.4) is tantamount to assuming that moisture transport in the temperate
ice occurs down gradients of moisture content, and follows the same diffusive model
as heat transport in subtemperate ice (such an ‘enthalpy gradient’ model was pioneered
by e.g. Hutter, Yakowitz & Szidarowsky 1986; Aschwanden et al. 2012). However,
this type of model is unlikely to be appropriate as there is no physical reason for flow
to occur always down moisture content gradients (Fowler 2001), and future work will
need to address the formation of temperate ice in greater detail.

4. Non-dimensionalization and solution
4.1. The problem in scaled form

First, we can reduce the number of free parameters in the model of § 2 by defining
scales [x] = H, [u] = τsH/η, [T] = Tm − Ts, [V] = κ/(ρc[x]) and dimensionless
variables through (ξ, y) = [x](ξ ∗, y∗), u = [u]u∗, T = Tm + [T]T∗, V = [V]V∗. This
leaves two dimensionless parameters that measure the strength of geothermal heat flux
and viscous dissipation,

ν = qgeo[x]
κ[T] , α = τ

2
s [x]2
ηκ[T] . (4.1)

For simplicity, we immediately drop the asterisks on the dimensionless variables.
The mechanical problem (2.1) then retains the same form, but with H, η and τs set to
unity, with x replaced by ξ , and xm set to zero. The scaled mechanical problem then
contains no dimensionless parameters, and reads

uξξ + uyy = 0 for 0< y< 1, (4.2a)

uy = 0 on y= 1, (4.2b)

uy = 0 on y= 0, ξ > 0, (4.2c)

u= 0 on y= 0, ξ < 0, (4.2d)
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uξ →
{

1
0

as ξ →+∞,
as x→−∞. (4.2e)

In dimensionless terms, the heat flow problem consisting of (2.2c)–(2.2g) and (2.4)
becomes

VTξ − Tξξ − Tyy = αa for y> 0, (4.3a)

VTξ − Tξξ − Tyy = 0 for y< 0, (4.3b)

T =−1 on y= 1, (4.3c)

T+ = T− on y= 0, (4.3d)

−T+y =−T−y on y= 0, ξ < 0, (4.3e)

T = 0 on y= 0, ξ > 0, (4.3f )
Ty→−ν as y→−∞, (4.3g)

where

a := u2
ξ + u2

y (4.4)

is independent of the dimensionless parameters in the problem. We see that α is a
dimensionless measure of the strength of heating, while the spatial distribution of
heating is always the same. From the definition of α, it is clear that its size is
dictated by a trade-off between depth-integrated dissipation, which scales as τ 2

s [x]/η,
and a background heat flux driven by temperature differences between bed and surface,
scaled as κ[T]/[x]. Note also that ν is simply the ratio of geothermal heat flux
to that background heat flux, and is therefore a measure of the extent to which
geothermal heat flux can supply that background heat loss from the bed; 1 − ν is then
a scaled measure of net rate of heat loss that the temperate part of the bed would
experience in the absence of dissipation. We will later see that the dimensionless group
α/(1 − ν) is key in determining the scaled velocity V∗. This can be interpreted more
straightforwardly as the ratio of depth-integrated heat dissipation to the net rate of
cooling of the bed that would occur in the absence of dissipation.

The solution procedure in §§ 4.2–4.3 below – which the less mathematically
inclined reader can skip – shows that the scaled migration rate V∗ (or V in (4.3),
as we have just omitted asterisks) is a function of the shear heating strength parameter
α, which in turn is a scaled lateral shear stress τs from (4.1).

4.2. Wiener–Hopf solution and the relationship between V and dimensionless shear
heating strength α

The mechanical problem (4.2) is easy to solve using the same method as in Schoof
(2004). A closed-form solution can be found as

uξ − iuy =
exp

(
πz

2

)
[
exp(πz)− 1

]1/2 , (4.5)

where z = ξ + iy and the square root is the usual branch. It is easy to verify that
(2.1a) is satisfied as a Cauchy–Riemann condition, and that (4.5) also satisfies all
the boundary conditions in (2.1). The rate of heat production is therefore given in
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FIGURE 3. (a) Contours of u(ξ, y) at contour intervals of 0.1. (b) The corresponding heating
rate a(ξ, y)= u2

ξ + u2
y , with the same contour intervals.

dimensionless form by (see figure 3)

a=
exp

(
πξ

2

)
2

√
sinh2

(
πξ

2

)
+ sin2

(
πy

2

) . (4.6)

This shows that the singularity strength in § 3 is given in dimensionless terms by
a2

0 = 1/π.
Next, we need to solve the thermal problem (4.3). Note that a→ 1 exponentially

as x→+∞ from (4.6); a is therefore not integrable. To facilitate the use of Fourier
transforms, define a reduced temperature Θ through

T(ξ, y)=
{
−1+ ν(1− y)+ α

2
φ(ξ)y(1− y)+Θ(ξ, y) for 0< y< 1,

−1+ ν(1− y)+Θ(ξ, y) for y< 0,
(4.7)

where φ is a twice continuously differentiable cut-off function that satisfies φ(ξ) = 0
for ξ < ξ1 and φ(ξ) = 1 for ξ > ξ2, with ξ2 > ξ1 > 0 fixed; a possible choice for
ξ1 6 ξ 6 ξ2 is

φ(ξ)= 3ζ 5/16− 5ζ 3/8+ 15ζ/16+ 1/2 where ζ := −1+ 2(ξ − ξ1)/(ξ2 − ξ1). (4.8)

This is a simple change of variable from T to Θ , and does not affect the uniqueness of
solutions. In particular, for a given V , the governing equations (4.9) below are linear,
and different choices of cut-off function φ, say φ1 and φ2, merely lead to different
values of Θ related through Θ2 =Θ1 + α(φ1 − φ2)y(1− y) for 0< y< 1, and Θ2 =Θ1

for y < 0. V is determined ultimately by enforcing the behaviour of T , and hence Θ ,
to be o(r1/2) near the origin. But φ1 and φ2 vanish near the origin, and hence Θ1 and
Θ2 computed from (4.9) with the same V have the same local behaviour. Therefore,
if a certain value of V generates the correct o(r1/2) behaviour for one choice of φ, it
also does so for the other, and the correct V cannot depend on the choice of cut-off
function φ.

A similar complication to a being non-integrable is that the constant term on the
right-hand side of (4.3c) is also not integrable. In common with similar problems in
fluid dynamics (e.g. Barcilon & MacAyeal 1993), we regularize this term in order
to apply the Wiener–Hopf method. Let the function Θε(ξ, y) satisfy the following
regularized problem:

VΘε,ξ −Θε,ξξ −Θε,yy = αb for y> 0, (4.9a)

VΘε,ξ −Θε,ξξ −Θε,yy = 0 for y< 0, (4.9b)
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Θε = 0 on y= 1, (4.9c)

Θ+ε =Θ−ε on y= 0, (4.9d)

−Θ+ε,y =−Θ−ε,y on y= 0, ξ < 0, (4.9e)

Θε = (1− ν) exp(−εξ) on y= 0, ξ > 0, (4.9f )

Θε,y→ 0 as y→−∞. (4.9g)

Here

b(ξ, y) := a(ξ, y)− φ(ξ)− Vφ′(ξ)y(1− y)/2+ φ′′(ξ)y(1− y)/2 (4.10)

as well as the exponential term on the right-hand side of (4.9f ) are integrable. Θ
satisfies (4.9), but with the right-hand side of (4.9f ) replaced by 1 − ν, which
corresponds to the limit ε → 0. We proceed on the standard assumption that
limε→0Θε(ξ, y) = Θ(ξ, y) pointwise in (ξ, y). That is, we find the solution to (4.9)
for finite ε, and then take the limit ε→ 0.

Define the Fourier transform of a function f (ξ) as

F (f )(k)= f̂ (k) :=
∫ ∞
−∞

f (ξ) exp(−ikξ) dξ. (4.11)

Then Θ̂ε satisfies

−Θ̂ε,yy + (k2 + iVk)Θ̂ε = αb̂ for y> 0 (4.12a)

−Θ̂ε,yy + (k2 + iVk)Θ̂ε = 0 for y< 0. (4.12b)

Using the method of variation of coefficients, a solution that satisfies the surface and
far-field boundary conditions (4.9c) and (4.9g) takes the form

Θ̂ε(k, y)= α
[∫ 1

y

sinh[m(1− y′)]
m sinh(m)

b̂(k, y′) dy′
]

sinh(my)

+α
[∫ y

0

sinh(my′)
m sinh(m)

b̂(k, y′) dy′
]

sinh[m(1− y)] + A sinh[m(1− y)] (4.13a)

for 0< y< 1, and

Θ̂ε(k, y)= B exp(my) (4.13b)

for y< 0, where

m= (k2 + ikV)
1/2

(4.14)

has branch cuts on the imaginary k-axis for Im(k) > 0 and Im(k) < −V , and behaves
as m∼ |k| for large real k. Continuity of Θε at y= 0, equation (4.9d), further requires

A sinh(m)= B. (4.15)

Next, define

F(ξ)=Θε(ξ, 0)− (1− ν) exp(−ε|ξ |), G(ξ)=Θ+ε,y(ξ, 0)−Θ−ε,y(ξ, 0). (4.16)

Then F(ξ) = 0 for ξ > 0 and G(ξ) = 0 for ξ < 0, so that F̂(k) = F̂+(k) and
Ĝ(k) = Ĝ−(k) are analytic in the upper and lower halves of the complex-k-plane,
respectively (Noble 1958). (Note that references to plane geometry below all concern
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the k-plane.) On the real axis, we then have

F̂+(k)= B− (1− ν)
(

1
ε + ik

+ 1
ε − ik

)
(4.17)

from (4.9f ), and

Ĝ−(k)= α
∫ 1

0

sinh[m(1− y)]
sinh(m)

b̂(k, y) dy− m cosh(m)A− mB (4.18)

from (4.9e). Eliminating A and B between (4.15), (4.17) and (4.18) finally leads to the
standard Wiener–Hopf problem (Noble 1958)

Ĝ−(k)=W(k)F̂+(k)+ h(k), (4.19)

where

W(k)=− (k2 + ikV)
1/2

exp
[
(k2 + ikV)1/2

]
sinh

[
(k2 + ikV)1/2

] , (4.20)

h(k) = (1− ν)W(k)
(

1
ε + ik

+ 1
ε − ik

)
+α

∫ 1

0

sinh
[
(k2 + ikV)1/2(1− y)

]
sinh

[
(k2 + ikV)1/2

] b̂(k, y) dy. (4.21)

First, we need to construct a decomposition W(k) =W+(k)/W−(k), where W+ and
W− are continuous and non-zero on the real axis and can be continued analytically
into the lower and upper half-planes, respectively. Let

W2(k)=
k1/2 exp

[
(k2 + ikV)1/2

]
2 (k − iV)1/2 sinh

[
(k2 + ikV)1/2

] , (4.22)

where k1/2 and (k − iV)1/2 behave as the principal value of
√

k when k→ +∞
along the real axis, and have branch cuts on the positive half of the imaginary
axis, extending upwards from branch points at the origin and at k = iV respectively.
Meanwhile, (k2 + ikV)1/2 = m is the same branch as before. Then W2(k) is Hölder
continuous and non-zero on the real axis, and behaves as W2(k) ∼ 1 + iV/2k for
large real k→ ±∞. In fact, W2(k) never crosses the negative real axis for real
k, so log(W2(k)) is Hölder continuous if the usual branch of the logarithm is
used.

A standard decomposition using Plemelj’s formulae can therefore be written as
W2(k)=W+2 (k)/W

−
2 (k), where

W±2 (k)= exp
(

1
2πi

∫ ∞
−∞

log(W2(k′)) dk′

k − k′

)
, (4.23)

choosing superscripts + and − for k in the upper and lower half-planes, respectively.
We have W(k) = −2 (k + iV)1/2 (k − iV)1/2 W2(k), where (k + iV)1/2 has a branch

cut extending from k = −iV downwards along the negative imaginary axis, and again
behaves as the principal value of

√
k when k→+∞. The appropriate factorization is
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therefore (Noble 1958, see in particular exercise 1.12)

W+(k)=−2 (k + iV)1/2 W+2 (k), W−(k)= W−2 (k)

(k − iV)1/2
. (4.24)

For k→∞ in the upper and lower half-planes, we have W±2 (k)→ 1 by construction;
in fact, with W2(k)∼ 1+ iV/2k for large k, we expect W±2 (k)∼ 1+ iV log(k)/(4πk)+
O(1/k). It follows that W+(k) ∼ k1/2/2 and W−(k) ∼ k−1/2. This behaviour will be key
later in determining the limiting behaviour of heat flux G(ξ) at the origin, which we
have already constrained in § 3. We will then use this limiting behaviour to derive a
constraint on migration velocity V .

The standard Wiener–Hopf method now re-writes (4.19) as W−(k)Ĝ−(k) =
W+(k)F̂+(k) + W−(k)h(k), and decomposes the inhomogeneous term additively into
functions f+ and f− that can be continued analytically into the upper and lower
half-planes, i.e. W−(k)h(k)= f+(k)− f−(k) . Then

W−(k)Ĝ−(k)+ f−(k)=W+(k)F̂+(k)+ f+(k), (4.25)

so that the left- and right-hand sides are analytic continuations of one another, and
are therefore representations of the same entire function Ω(k) in the lower and upper
half-planes. Once that function has been found, Ĝ+ and F̂− are fully determined.

The next step is to find f− and f+. We have

W−(k)h(k)= (1− ν)W+(k)
(

1
ε + ik

+ 1
ε − ik

)

+αW−(k)
∫ 1

0

sinh
[
(k2 + ikV)1/2(1− y)

]
sinh

[
(k2 + ikV)1/2

] b̂(k, y) dy. (4.26)

Trivially, W+(k)/(ε − ik) can be continued analytically into the upper half-plane. To
decompose the remainder of W−h, we can use Plemelj’s formulae. For k in the lower
half-plane, we get

f−(k)= 1− ν
2πi

∫ ∞
−∞

W+(k′) dk′

(ε + ik′)(k′ − k)

+ α

2πi

∫ ∞
−∞

W−(k′)
k′ − k

∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] b̂(k′, y) dy

 dk′

=−(1− ν)W
+(iε)

ε + ik
+ α

2πi

∫ ∞
−∞

W−(k′)
k′ − k

×
∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] b̂(k′, y) dy

 dk′, (4.27)

where we have used the behaviour of W+ at infinity combined with the residue
theorem to simplify the first term on the right-hand side.
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The limiting behaviour of (3.4) gives G(ξ)∼ b0ξ
−1/2. Watson’s lemma (Hinch 1991)

then states that the Fourier transform Ĝ− must behave as

Ĝ−(k)∼ b0

√
2π/[(i+ 1)k1/2] + o(k−1/2) (4.28)

for k→∞ in the lower half-plane. But

Ĝ−(k)=Ω(k)/W−(k)− f−(k)/W−(k). (4.29)

Ω is entire and therefore either has polynomial behaviour or an essential singularity
at infinity. With W−(k) ∼ k−1/2, the only Ω that is consistent with Ĝ−(k) remaining
bounded is therefore Ω ≡ 0.

To find b0 in (4.28), we still need to identify the limiting behaviour of f−(k)/W−(k)
and hence of f− at infinity. The only complication is the integral

h2(k
′) :=

∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] b̂(k′, y) dy, (4.30)

which we cannot compute in closed form. The integral is clearly continuous in k′.
At issue is only its behaviour for large k′. This is dominated by the singularity
in b(ξ, y) at the origin. We have b(ξ, y) = 1/(πr) + b̃(ξ, y), where r =√ξ 2 + y2

as before; b̃ is bounded and behaves as ξ/(2r) near the origin, with b̃ − ξ/(2r)
uniformly Lipschitz continuous throughout the domain, and smooth except at the
origin.

A standard identity gives F (1/r) = 2K0(|k|y) (Abramowitz & Stegun 1972), where
Kµ denotes the µth-order modified Bessel function of the second kind. For large k′,
we have∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] K0(|k′|y) dy∼

∫ 1

0
exp(−|k′|y)K0(|k′|y) dy

= 1
|k′|
∫ |k′|

0
exp(−Y)K0(Y) dY

∼ 1
|k′| , (4.31)

with Y = |k′|y. The error in this approximation is exponentially small in k′. It
can further be shown that the contribution of b̃ to h2 behaves as O(k′−2

). Hence
W−(k′)h2(k′) is integrable, with large-k′ behaviour

|W−(k′)h2(k
′)| ∼ 2|k′ |−3/2 /π+ O(k′−5/2

) as k′→±∞. (4.32)

From (4.27), it then follows that at leading order in large k,

f−(k)
W−(k)

∼
(

i(1− ν)W+(iε)− α

2πi

∫ ∞
−∞

W−(k′)

×
∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] b̂(k′, y) dy

 dk′
)

1
k1/2

. (4.33)
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In fact, it can be shown (by determining the contribution of b̃ to h2(k) up to O(k−3),
splitting the range of integration in (4.27) into a central region and semi-infinite tails,
and restricting k to a wedge Im(k) < −δ|Re(k)|) that the correction to (4.33) is of
O(k−3/2).

Comparing (4.33) with (4.28), we can identify b0(i + 1)
√
π/2 with the coefficient

of k−1/2 (the term in round brackets) on the right-hand side of (4.33). From § 3, we
require that heat flux at the origin be non-singular, so that b0 = 0. The coefficient of
k−1/2 in (4.33) must therefore vanish. This constraint can be written in the form

1− ν
α
= −1

2πW+(iε)

∫ ∞
−∞

W−(k′)

∫ 1

0

sinh
[
(k′2 + ik′V)

1/2
(1− y)

]
sinh

[
(k′2 + ik′V)

1/2
] b̂(k′, y) dy′

 dk′.

(4.34)

Recall that we eventually need to take the limit ε→ 0; with this in mind can replace
W+(iε) by W+(0) above.

Equation (4.34) is then the relationship we seek, albeit in implicit form. Suppose
we know the dimensional migration velocity V as well as the temperature difference
Ts − Tm and ice thickness H. Together, these give us the dimensionless migration
velocity V∗ that appears on the right-hand side of (4.34) (recall that we dropped
the asterisks on non-dimensionalization). We can then compute the integrals on the
right-hand side, and therefore find the corresponding value of (1 − ν)/α. Given
geothermal heat flux qgeo and the definition of α and ν in (4.1), this determines
what the corresponding lateral shear stress τs must be. This calculation is however the
reverse of what is likely to be needed in practice: instead of being given a migration
velocity, we are more likely to know the lateral shear stress τs a priori from the
force balance of the ice stream, as well as qgeo, Ts − Tm and H. In that case, the
corresponding migration rate V is defined implicitly by (4.34).

Once the constraint (4.34) is satisfied, it is straightforward to find the function
Ĝ−(k) and hence F̂+(k), from which the Fourier transform Θ̂ε of temperature can
be reconstructed. This is not however our primary aim here; instead we are mostly
interested in the relationship between velocity V and the proxy α/(1 − ν) for lateral
shear stress. Before computing this, we have to address a complication: it is not
immediately obvious that (1 − ν)/α calculated from (4.34) is necessarily real, as is
required physically. We provide a proof in appendix C.

4.3. Numerical method
The right-hand side of (4.34) can be computed by relatively straightforward numerical
quadratures, requiring some care with the infinite ranges of integration and Cauchy
principal value integrals involved. We only sketch the details here.

Integration over the real axis is generally handled by splitting the range of
integration into (−∞, k1), (k1, k2) and (k2,∞), with k1 < 0 < k2 fixed. We change
variables to v = |k |−1/2 outside the finite interval (k1, k2) to transform the ‘tails’
(−∞, k1) and (k2,∞) to a finite range of integration. Under this change of variables,
an integrand behaving as k−3/2 at large k yields a bounded integrand with respect to
v. We subdivide the range of integration further to capture regions with significant
variations in the integrand as necessary, and Gaussian quadratures are used to evaluate
the resulting integrals. Multiple integrals are handled by a standard separation of
variables (Isaacson & Keller 1966, § 7.3).

The sole exception to this procedure is the calculation of the Fourier transform of
b. We use the cut-off function defined in (4.8) to define b(x, y), and apply a fast
Fourier transform to compute b̂, splitting off the singular part of b first as indicated
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FIGURE 4. The migration velocity V∗ as a function of the heating parameter α/(1 − ν) is
shown as a solid black line. The dashed line (barely visible next to the solid line) shows a
least-squares fit to a quadratic f20 over the range shown in the figure. The dot-dashed line
shows a least-squares fit to a quadratic f120 over a larger range.

below equation (4.30); b̂(k, y) is then interpolated onto the Gaussian integration
nodes for the remaining integrals. For large k, we use the asymptotic behaviour
b̂(k, y)∼ 2K0(|k|y)/π− i|k|yK1(|k|y)/k.

Boundary values of Cauchy integrals are required in evaluating W±2 (k) and f±(k).
These are computed using Plemelj’s formulae, dealing with principal value integrals as

PV
∫ ∞
−∞

φ(k′) dk′

k′ − k
=
∫ k+K

k−K

φ(k′)− φ(k)
k′ − k

dk′ +
∫ k−K

−∞

φ(k′) dk′

k′ − k
+
∫ ∞

k+K

φ(k′) dk′

k′ − k
, (4.35)

where K is an arbitrary fixed positive number; the expressions on the right are then all
ordinary integrals.

5. Results
For clarity, we re-introduce the asterisks on dimensionless variables here: recall that

dimensional variables and their dimensionless counterparts are related simply by the
scalings in § 4.1

The theoretical development in § 4 shows that the scaled migration velocity V∗ is
a function of the shear heating rate parameter α/(1 − ν) alone. All combinations
of forcing parameters can be collapsed onto this single relationship. In a more
comprehensible dimensional form, substituting from § 4.1, this relationship can be
written as

V = κ

ρcH
f

(
τ 2

s H

η
[
κ(Tm − Ts)/H − qgeo

]) , (5.1)

where V is the dimensional migration velocity and f is a function of a single
argument. Figure 4 shows the shape of the function f as a solid black line, plotting
V∗ = ρcHV/κ = f (α/(1− ν)) against α/(1− ν)= τ 2

s H/{η[κ(Tm − Ts)/H − qgeo]}.
The plot has two main features. Firstly, f is positive only when its argument exceeds

a critical value. Physically, this means that a widening of the ice stream requires a
minimum amount of shear heating. In figure 4 positive values of V∗ correspond to
α/(1− ν)> 2.749, or equally to

τ 2
s >

2.749η[κ(Tm − Ts)/H − qgeo]
H

. (5.2)

This is physically realistic: in the absence of shear heating, the temperature field near
the transition point is dominated by the cooling-fin effect described in § 3, and the
temperate part of the bed is subject to intense heat loss that will cause the ice stream
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FIGURE 5. Controls on migration rate: the temperature field T∗(ξ ∗, y∗) around the transition
point (ξ ∗, y∗) = (0, 0) (note that the figure labels omit asterisks for visual clarity) for a
heating rate of α/(1 − ν) = 7.609, but for different V∗. These are computed from the linear
system (4.9) using (4.24) and (4.27), but not all have V constrained through (4.34). Contour
intervals are 0.1 and temperate regions T∗ > 0 are shown in grey, while T = 0 is a heavy black
curve. The transition point is marked by a solid black dot, with the temperate bed shown as
a solid line to the right; ν = 0.25. (a) The temperature solution when the migration velocity
is correctly related to migration rate through (4.34), which gives V∗ = 3. Clearly there is a
temperate zone above and to the right of the transition point. (b) The solution for V∗ = 0.3.
The migration velocity is now too slow, and the ice in the margins has longer to warm up.
Consequently there is excessive build-up of heat, and the bed to the left of the transition point
(where it should be frozen) is temperate. (c) The solution for V∗ = 15; the temperate region is
now shifted to the right and temperature contours are clustered around the origin, where there
is a heat flux singularity that should cause the bed to freeze.

to narrow instead of widen. A finite amount of shear heating is required to overcome
the cooling-fin effect, and this leads to the minimum value for τs above.

The second feature is that, for shear heating in excess of this minimum, the
migration velocity is a monotonically increasing function of the shear heating rate.
Again, this is realistic: larger heating rates will tend to cause temperatures near the
transition point to rise. To prevent the temperature on the frozen side of the transition
point from attaining the melting point, the margin has to migrate faster. This has the
effect of allowing less time for the ice near the transition point to warm up, as the
margin is constantly moving into colder ice outside the ice stream that has not yet
been affected by the intense shear heating in the margin itself.

In fact, the function f can be fitted very well by low-order polynomials. Also shown
in figure 4 as a dashed line (barely visible because it closely overlaps the solid line) is
a least-squares fit to a quadratic over the range shown in the figure,

f20

(
α

1− ν
)
=−1.645+ 0.579×

(
α

1− ν
)
+ 0.00374×

(
α

1− ν
)2

, (5.3)

which, over this range, has a maximum absolute error less than 0.045. In addition, the
dot-dashed line shows a least-squares fit over the range 2.75 6 α/(1− ν)6 120:

f120

(
α

1− ν
)
=−1.862+ 0.633×

(
α

1− ν
)
+ 0.00258×

(
α

1− ν
)2

. (5.4)

This diverges a little over the range shown in the figure, but maintains a maximum
absolute error less than 0.5 for α/(1− ν) up to 120.

We can also investigate the temperature field in the margin. Figure 5(a) shows
the temperature field T∗(ξ ∗, y∗) around the transition point for V∗ = 3, with the
corresponding α/(1 − ν) given by (4.34). An obvious feature is the substantial region
of ice with T∗ > 0 (or T > Tm) extending above and to the right of the transition point
at the origin. This is in line with our prediction in § 3, that widening of the ice stream
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requires at least a small region of temperate ice near the transition point. As indicated
before, we assume here that this simply corresponds to a zone of temperate ice; in
reality, a temperate ice zone should be modelled separately based on the physics of
melt drainage through a partially molten ice matrix (Fowler 2001), and its shape may
not be exactly the same as that shown in figure 5. This will need to be addressed by
future work.

The remaining panels in figure 5 also show solutions to (4.3) for the same value
of α/(1 − ν) as in figure 5(a), but these solutions have arbitrarily chosen values of
V∗ that are not linked to α/(1 − ν) through (4.34). These solutions therefore violate
either T∗(ξ ∗, 0) < 0 for ξ ∗ < 0, or T∗y∗ (ξ

∗, 0)+−T∗y∗ (ξ
∗, 0)− > 0 for ξ ∗ > 0. They are

plotted to illustrate the physics that links migration rate to the shear heating rate, and
are analogous to figure 2(b,c). Figure 5(b) shows the temperature field T∗(ξ ∗, y∗) with
the migration rate reduced by a factor of 10 from figure 5(a). Here, the constraint
that T∗ < 0 at the bed to the left of the transition point is clearly violated, as the
temperate ice zone extends down to the bed. The migration rate is too slow, allowing
the build-up of excessive heat in the margin.

Figure 5(c) again uses the same heating rate α/(1 − ν), but with the migration rate
increased by a factor of 5 from figure 5(a). In this case, migration into the colder
ice to the left of the ice stream is so fast that shear heating is unable to warm the
ice enough. The temperate ice zone has been shifted considerably away from the
transition point, around which the ice remains cold. The temperature contours around
the transition point also become closely spaced, indicating large heating fluxes out of
the bed. This is in fact the result of the heat flux singularity predicted for the ‘cooling
fin’ geometry of the temperate bed in § 3. Instantaneously, this temperature field would
cause the water contained in the bed immediately to the right of the transition point to
freeze; over time, the migration rate and temperature field should adjust to that shown
in figure 5(a).

As a result, neither of the migration rates shown in figure 5(b,c) are viable. The
solution in figure 5(a) in fact corresponds to the only migration rate for which there is
neither melting to the left of the transition point, nor freezing to the right.

Figure 6 shows additional examples of physically acceptable temperature fields that
do satisfy the conditions T∗(ξ ∗, 0) < 0 for ξ ∗ < 0 and T∗y∗ (ξ

∗, 0)+−T∗y∗ (ξ
∗, 0)− > 0

for ξ ∗ > 0 as required, so that V∗ and α/(1 − ν) are linked through (4.34). Shown
are solutions for different migration velocities, corresponding to different shear heating
rates. The faster migration rates in figure 6(b) (V∗ = 1) and figure 6(c) (V∗ = 10)
correspond to more intense shear heating. Consequently the temperate ice zone above
and to the right of the transition point becomes more extensive for larger V∗. However,
they also correspond to less time available for heating, and this is evident in the
isotherms below the bed, where no heat is generated. At higher migration velocities,
these isotherms are flattened out, as less of the rock has been able to heat up.

6. Discussion
The main purpose of our theory is to allow models for ice-stream dynamics to

include margin migration. A frequently used model for the flow of a wide and thin ice
stream is the depth-integrated ‘membrane stress’ (or ‘shallow shelf’) approximation
(MacAyeal 1989; Hulbe & MacAyeal 1999). Restricting ourselves to the same
effectively two-dimensional geometry used above, so we consider variations in the
cross-flow direction only, this can be reduced to (Raymond 1996)(

1
2 BH|ux |1/n−1 ux

)
x
− τb(u,N)− ρgH sinβ = 0, (6.1)
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FIGURE 6. The temperature field T∗(ξ ∗, y∗) around the transition point (ξ ∗, y∗) = (0, 0);
same line scheme as in figure 5, but all solutions now have V∗ related to α/(1 − ν) through
(4.34). Again, grey regions indicate T∗ > 0, while the heavy black curve for ξ ∗ > 0, Y∗ = 0
indicates T∗ = 0 there. (a) V∗ = 0, (b) V∗ = 1 and (c) V∗ = 10.

where H and u still denote ice thickness and velocity, and x is the cross-flow
coordinate. The flow of ice is assumed to be a plug flow, with u dependent only
on x; β is ice surface inclination in the along-flow direction, while ρ and g are density
of ice and acceleration due to gravity, respectively. The basal shear stress τb may be an
increasing function of velocity and of effective pressure at the bed (e.g. Budd, Keage
& Blundy 1979; Fowler 1987), or independent of velocity and related to effective
pressure through a Coulomb friction law as suggested by recent studies on Antarctic
ice streams (Tulaczyk et al. 2000a; Schoof 2006). Effective pressure is defined as
ice overburden pressure minus basal water pressure, and a complete model therefore
requires coupling the ice flow model (6.1) to a description of water production, storage
and transport. Recent work on ice-stream dynamics (Bougamont et al. 2011) has
focused on this coupling to capture feedbacks between ice flow and water production
(see also Fowler & Johnson 1996; Sayag & Tziperman 2008). However, existing
models in general do not consider the thermal physics that occurs in the shear margins
in order to determine their location, and frequently impose fixed margin locations (e.g.
Hulbe & MacAyeal 1999).

In (6.1), the appropriate boundary condition at a margin x = ±xm is u(±xm) = 0
(Raymond 1996). For a given effective pressure N, this allows ice velocity to be
computed straightforwardly as the solution of the elliptic problem (6.1). The shear
margin model developed above is essentially a boundary layer model that must match
in its far field with the bulk of the ice stream described by (6.1). The boundary layer
model then furnishes a rate of margin migration in response to a shear stress imposed
by the ice stream. Defining the lateral shear stress at the margin through

τs = 1
2 B|ux |1/n−1 ux

∣∣
x=xm

, (6.2)

the theory computes the rate of margin migration as in (5.1),

ẋm = V(τs, qgeo,H,Ts − Tm). (6.3)

Note that (5.1) strictly speaking only applies to Newtonian ice. A heuristic
generalization to Glen’s law can presumably be constructed by allowing viscosity
in (5.1) to depend on stress as η = (B/2)n τ 1−n

s .
The theory as currently formulated may run into some difficulties, however, and

these point to desirable improvements that future work will need to provide. The
primary difficulty is that (6.3) is in fact a recipe for runaway widening of ice streams.
Assuming a symmetric ice stream, the rate of widening is simply twice the migration
rate V . The migration rate V as shown in figure 4 is a monotonically increasing
function of lateral shear stress τs. For many Antarctic ice streams, velocities are
limited by lateral shearing rather than by basal shear stress τb (e.g. Joughin et al.
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2002). If we ignore τb as a result, then (6.1) predicts that lateral shear stress increases
linearly with ice-stream width. Hence the rate of ice-stream widening is an increasing
function of ice-stream width. This ought to lead to ever faster ice-stream widening in a
positive feedback.

There is no evidence that this happens in nature, which leads us to look for a
stabilizing mechanism. The migration rate V in (5.1) is not simply a function of lateral
shear stress τs alone, but also an increasing function of ice thickness H. A reduction
in H leads to less heat dissipation for the same lateral shear stress τs, and to faster
conductive heat loss from the bed. A reduction in ice thickness H will therefore slow
the widening of the ice stream. Hence, if the increased ice discharge associated with a
wider ice stream leads to significant mass loss and hence a thinning of the ice stream,
this may suppress runaway growth. Further research is needed to determine if this
effect is sufficient.

An additional effect that is currently not included in our model is the advection
of cold ice by ice flow across the shear margin (see also Echelmeyer et al. 1994;
Jacobson & Raymond 1998). In reality, the parallel-slab geometry assumed in § 2 is
misleading, as the ice surrounding most ice streams is thicker than the ice stream itself.
This generates a surface slope that drives ice from these surrounding ice ridges across
the shear margins and into the ice stream itself.

This form of advection plays much the same role in cooling the shear margin as
migration does in our theory above. Rather than having to migrate outwards into
colder ice to avoid excessive heating, the shear margin can now also be prevented
from warming by that colder ice being actively advected across the shear margin
(Echelmeyer et al. 1994; Jacobson & Raymond 1998). In fact, mathematically, the
two effects enter in very similar ways: let v be the lateral inflow velocity in the
(x, y)-plane. The obvious generalization of our model is to retain (2.2c)–(2.2g) and
(2.4b), but to replace (2.4a) with

ρcVTξ + ρcv ·∇T − κ∇2T = η(u2
ξ + u2

y) (6.4)

with ∇ = (∂/∂ξ, ∂/∂y), and v given by an appropriate model for the lateral inflow of
ice across the shear margin.

This generalization cannot be solved using the Wiener–Hopf method in § 4
because the advection velocity v is not constant, and the Fourier transform of the
advection term is not simply a multiple of the Fourier transform of temperature T;
a more complicated direct numerical solution of the generalized model is required.
Nonetheless, V and v obviously play similar roles in (6.4), and a crude approximation
would be to suppose that the migration velocity V computed in § 5 is now the sum of
the actual migration velocity and the vertically averaged x-component of v. Denoting
the latter quantity by v̄, the actual margin migration velocity would then be

V = κ

ρcH
f

(
τ 2

s H

η
[
κ(Tm − Ts)/H − qgeo

])− v̄, (6.5)

so that the cross-margin flow slows down margin migration, as also predicted by
Jacobson & Raymond (1998). Its stabilizing effect is ultimately also linked to lowering
the ice surface in the ice stream: this has the effect of increasing the surface slope
of the surrounding ice ridge, and therefore of driving faster ice flow across the
margin at least temporarily, until ice gradient between ridge and stream is reduced as
well.

Of course, (6.5) is purely an ad hoc fix. In reality, v is likely to exhibit a
significant vertical shearing profile, and the strongest advective heat transport will
happen closer to the surface. A likely consequence of this is to cool the surface
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layers in the margin more than the ice near the bed, and thereby potentially to
reduce the extent of temperate ice. A more sophisticated treatment of the temperate
ice region is the second major improvement our model calls for; at present the
complications introduced by producing a partial melt in the ice are completely ignored.
Additionally, the effect of a non-constant viscosity, and in particular the coupling
between dissipation, temperature and viscosity (Echelmeyer et al. 1994; Jacobson &
Raymond 1998; Truffer & Echelmeyer 2003) will also need to be considered in future
research. However, even with these improvements still to be made, our model still
provides a useful test case for any numerical algorithm designed to solve a more
complicated model for the margin, provided the additional physics can be ‘switched
off’ in such a model.

There remains the need for observational verification, which we do not address in
detail here. The change in basal conditions across shear margins is difficult to observe
as direct access to the bed is usually not available. However, longer time series of
shear margin migration combined with ice-stream velocity fields may eventually help
to test the present models, as could any future drilling efforts; the latter are however
likely to be difficult due to the often extensive crevasse fields at the surface of shear
margins (Harrison et al. 1998).

7. Conclusions
We have developed a model for how the margin of an ice stream migrates outward

over time. Our basic assumption is that a transition from slip to no slip occurs where
the temperature of the bed drops below the melting point. That transition point can
move in response to two competing effects. Intense shear heating in the margin will
tend to warm the bed outside the area where slip is occurring, and therefore tend
to widen the ice stream. The tip of the temperate bed region also has the geometry
of a cooling fin, and is potentially subject to intense conductive heat loss that will
tend to freeze the bed, causing the ice stream to narrow. The migration speed must
balance these two effects. If the migration speed is too low, excess heat builds up
and the bed warms, which leads to faster migration. If the migration speed is too
large, the margin advances rapidly into colder ice with insufficient time for warming
by shear heating. The cooling-fin effect then dominates, causing freezing of the bed,
suppressing outward migration.

Our model shows how a steady migration speed can be computed by requiring that
neither of these two scenarios occurs. Our results lead to two main conclusions. First,
a widening of the ice stream invariably requires a region of temperate ice to form
near the transition from temperate to cold bed. Such a temperate region was previously
inferred by Perol (2011). Second, the widening rate is an increasing function of the
lateral shear stress imposed on the margin. In addition, this lateral shear stress must
exceed a critical minimum value below which no widening is possible; in fact, we
expect the bed in the margins to freeze shut when this minimum value is not attained.

The model requires two improvements in future: a better treatment of the temperate
ice zone, and the inclusion of advection of heat by ice flow across the margin. It is
at present unclear if more sophisticated treatments of temperate ice will change our
results qualitatively. The inclusion of lateral heat advection is likely to slow margin
migration, depending on the advection speed.
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Appendix A. The near-field temperature solution
The validty of (3.4) can be demonstrated simply by substituting in (3.3). Here we

show how to derive (3.4) as the general solution to the local heat flow problem
(3.3) through a complex-variable method. Define the complex number z = ξ + iy.
Transforming to z and its conjugate z = ξ − iy as independent variables, (3.3) can be
re-written as (England 1971)

−4
∂2T

∂z∂z
=

ηa2

0

k
(zz)−1/2 for Im(z) > 0,

0 for Im(z) < 0.
(A 1)

This has a general solution

T(z, z)=

−
ηa2

0

k

[
(zz̄)1/2+ z

2
+ z

2

]
+ φ(z)+ φ(z) for Im(z) > 0,

φ(z)+ φ(z) for Im(z) < 0
(A 2)

where φ(z) is analytic in the lower and upper half-planes, but not necessarily across
the real axis. The boundary conditions in (3.3) state that

φ (ξ)++φ(ξ)+ = φ (ξ)−+φ(ξ)−, (A 3a)

i
(
φ′ (ξ)+−φ′(ξ)+

)
= i
(
φ′ (ξ)−−φ′(ξ)−

)
for ξ < 0, (A 3b)

φ (ξ)++φ(ξ)+ = 2a0ξ

k
, φ (ξ)−+φ(ξ)− = 0 for ξ > 0. (A 3c)

Differentiating (A 3b) with respect to ξ shows that φ′ is analytic in the complex
z-plane cut along the positive real axis, while similar differentiation of (A 3c)
shows that Re(φ′ (ξ)+) = ηa2

0/k, Re(φ′ (ξ)−) = 0 for ξ > 0. Moreover, φ′ is a
complex temperature gradient, and must therefore be integrable along the real axis.
Hence φ′ is sectionally holomorphic in the sense of Muskhelishvili (1992). A
straightforward reformulation as a pair of Hilbert problems results from defining
Φ(z) = [φ(z) + φ(z)]/2, Ψ (z) = [φ(z) − φ(z)]/2. Then Φ and Ψ are also sectionally
holomorphic in the cut plane, satisfying Φ (ξ)++Φ (ξ)− = 2a0/k, Ψ (ξ)+−Ψ (ξ)− =
2ηa2

0/k. These have general solution

Φ(z)= ηa2
0

k
+ z−1/2P1(z), Ψ (z)=− a0

πik
log(z)+ P2(z), (A 4)

where z−1/2 and log(z) have branch cuts along the positive real axis, taking their usual
principal values as the branch cut is approached from above. Given the symmetry
requirements imposed by the construction of Φ and Ψ , P1(z) =

∑∞
n=0αnzn and

P2(z) =
∑∞

n=0βnzn are convergent Taylor series with purely real and purely imaginary
coefficients, respectively; the form of the coefficients can only be determined further
if we apply additional far-field boundary conditions. The solution (3.4) can then be
recovered if we recognize that φ′(z) = Φ(z) + Ψ (z), and integrate subject to the
boundary condition Re(φ (ξ)−)= 0 for ξ > 0.
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Appendix B. Behaviour near the transition point during freezing
A complete account of freezing near the tip of the temperate bed is beyond the

scope of the present work and is given in a companion paper. This appendix focuses
only on how a local heat flux singularity near the tip necessarily leads to inward
migration of the transition point into the ice stream, and a narrowing ice stream.

We can dispense with the travelling wave form of (3.3) and revert to the
original heat equation (2.2a)–(2.2b). Near the transition point, temperature is again
dominated by diffusion, and the local heat flow model (3.3) continues to hold with
x − xm(t) = r cos(θ), y = r sin(θ). Hence we can assume a local solution for net heat
flux out of the bed of the form given by (3.5). Suppose that there is a finite amount of
water h(x, t) stored per unit area the bed. If this evolves due to freezing, then

ρwL
∂h

∂t
= κ(Tθ(r, 0)− Tθ(r, 2π))/r, (B 1)

where ρw is the density of water and L is latent heat of fusion. Using (3.5), this can be
written as

∂h

∂t
=−Ar−1/2 =−A (x− xm(t))

−1/2, (B 2)

where A=−κb0/(ρwL) > 0 during freezing. Let

h(x, 0)= h0(x) (B 3)

describe the initial fluid layer thickness, and pick the location of the origin such that
xm(0)= 0. Integrating (B 2) gives

h(x, t)= h0(x)−
∫ t

0

A

(x− xm(t′))
1/2 dt′. (B 4)

To find how the transition point xm(t) moves, the trick is to recognize that h becomes
zero at x= xm(t). Hence

0= h0(xm(t))−
∫ t

0

A

(xm(t)− xm(t′))
1/2 dt′. (B 5)

This turns into Abel’s integral equation for the rate of transition point migration if we
treat xm as the independent variable and t as a dependent variable. Let ξ = xm(t) and
change variables in the integral to x′m = xm(t′) and reserve xm to mean xm(t). Note that

dt′

dξ ′
= 1
/

dxm(t′)
dt′

= 1/ẋm, (B 6)

where we can treat the migration rate ẋm = dxm(t′)/dt′ as a function of x′m. Equation
(B 5) then becomes

h0(ξ)=
∫ ξ

0

A

(xm − x′m)
1/2

1
ẋm(x′m)

dx′m. (B 7)

This has solution (e.g. Debnath & Mikusiński 1999)

1
ẋm(xm)

= 1
Aπ

d
dxm

∫ xm

0

h0(x′m)

(xm − x′m)
1/2 dx′m. (B 8)
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Given the initial fluid thickness h0(ξ), this can be solved by separation of variables.
Recalling that we have chosen xm(0)= 0,∫ xm(t)

0

h0(x′m)

(xm(t)− x′m)
1/2 dx′m = Aπt. (B 9)

This defines xm(t) implicitly, and clearly xm(t) > 0 for t > 0 provided the initial
thickness h0 is positive: the margin moves to the right, or into the ice stream. Further
details are given in the companion paper (Schoof, 2012, submitted).

Appendix C. Real-valuedness of (1− ν)/α
We can demonstrate that the right-hand side of (4.34) is real by showing that it

is unchanged under complex conjugation. This is somewhat laborious but ultimately
simple.

Let an overbar denote complex conjugation. Taking care with the branches defined
for the various square roots and logarithms in § 4, it can be shown that for real k,

(k2 + ikV)1/2 = ((−k)2+i(−k)V)
1/2
, (C 1a)

(k − iV)1/2 = i ((−k)− iV)1/2, (C 1b)

k1/2 = i (−k)1/2, (C 1c)

and for k real or in the upper half-plane

(k + iV)1/2 =−i (−k + iV)
1/2
, (C 2)

where the branches on the left- and right-hand sides are the same in each case. Then

log(W2(k))= log

 k1/2 exp
[
(k2 + ikV)1/2

]
2 (k − iV)1/2 sinh

[
(k2 + ikV)1/2

]


= log

 k1/2

(k − iV)1/2

exp
[
(k2 + ikV)1/2

]
2 sinh

[
(k2 + ikV)1/2

]


= log(W2(−k)) (C 3)

and

W±2 (k)= exp

(
1
−2πi

∫ ∞
−∞

log(W2(k′))

k′ − k
dk′
)

= exp
(

1
2πi

∫ ∞
−∞

log(W2(k′′))

k′′ + k
dk′′
)

=W±2 (−k), (C 4)

where k′′ =−k′. On the real axis,

W−(k)=W−2 (k)/(k − iV)1/2

=−iW−2 (−k)/ ((−k)− iV)1/2

=−iW−(−k). (C 5)
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Similarly, for k in the upper half-plane, W+(k) = −iW+(−k), so W+(iε) = −iW+(iε).

Note also that the b(ξ, y) is real, so that b̂(k, y)= b̂(−k, y). Then

(
1− ν
α

)
= 1

2πW+(iε)

∫ ∞
−∞

W−(k′)

∫ 1

0

sinh
[
(k′2 + ik′V)1/2(1− y)

]
sinh

[
(k′2 + ik′V)1/2

] b̂(k′, y) dy′

 dk′

= 1
2π(−i)W+(iε)

∫ ∞
−∞

W−(k′)

∫ 1

0

sinh
[
(k′2 + ik′V)1/2(1− y)

]
sinh

[
(k′2 + ik′V)1/2

] b̂(k′, y) dy′

 dk′

= 1
2π(−i)W+(iε)

∫ ∞
−∞

(−i)W−(k′′)

∫ 1

0

sinh
[
(k′′2 + ik′′V)1/2(1− y)

]
sinh

[
(k′′2 + ik′′V)1/2

] b̂(k′′, y) dy′

 dk′′

= 1− ν
α

(C 6)

as required, where k′′ =−k′ as before.
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