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CAVITATION ON DEFORMABLE GLACIER BEDS∗

CHRISTIAN SCHOOF†

Abstract. The formation of water-filled cavities at the interface between a glacier and its bed
can significantly affect the drainage of meltwater along the base of a glacier, which in turn is one
of the most important controls on glacier sliding. In this paper, we analyze a mathematical model
for cavity formation on deformable glacier beds. By contrast with the case of rigid glacier beds,
the cavities described here are the result of an interfacial instability in coupled ice-sediment flow.
This instability causes bumps on the ice-sediment interface to grow until normal stress in the lee
of bed bumps drops to the local porewater pressure, at which point the ice begins to lose contact
with the surface of the sediment. We extend the basic instability model to cover the case of cavity
formation, and analyze the corresponding traveling wave problem. This takes the form of a viscous
contact problem in which the obstacle on the boundary—the traveling bed bump caused by the
initial instability—must be determined as part of the solution. A classical complex variable method
allows the traveling wave problem to be cast as an eigenvalue problem which is straightforward to
solve numerically. Our results show that solutions for different wavelengths can be obtained from an
apparently unique solution to a scaled problem, and that the amplitude of traveling waves increases
with wavelength, while their speed decreases with wavelength.
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1. Introduction. The ice contained in many glaciers, especially those in mid-
latitude mountain ranges, is close to the melting point, and meltwater generated at the
glacier surface can reach the glacier bed through a network of conduits or moulins in
the ice. The subsequent routing of meltwater via the glacier bed not only affects water
discharge from the glacier, but also the dynamics of the glacier itself. The downslope
motion of a glacier—which can be treated as a slowly flowing viscous body—consists
of shearing in the ice and sliding at its base. High water pressure at the base of
a glacier weakens the contact between ice and bed, and consequently reduces the
amount of friction generated at the bed by sliding [7, 20, 17].

The presence of water-filled cavities at the interface between a glacier and its
bed can play an important role in the drainage of meltwater along the glacier bed.
The purpose of this paper is to analyze a model for the formation of such cavities.
Previously developed mathematical models for subglacial cavitation [6, 17] deal with
the flow of ice over a rigid glacier bed, and are essentially viscous analogues of elastic
Signorini-type contact problems [13], although the subtle differences between the elas-
tic and viscous cases appear to preclude a variational formulation for the latter. In
contrast, the model considered here describes the spontaneous formation of cavities on
a bed composed of deformable sediment. Consequently, the bed no longer represents
a fixed “obstacle,” but evolves as a result of stresses at the ice-sediment interface.

The instability mechanism which causes the formation of cavities in our model was
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1634 CHRISTIAN SCHOOF

first proposed by Hindmarsh [11] and Fowler [8], and is described in detail in Schoof
[19]. It relies on the pressure-dependence of the viscosity of subglacial sediment. (More
precisely, sediment viscosity is assumed to depend on effective pressure, the difference
between total pressure and porewater pressure, which controls how hard sediment
grains are pressed together.) The mechanism may be summed up as follows: A shallow
bump in the interface between ice and sediment causes a perturbation in the flow of
ice over the bed, which leads to higher compressive normal stress being exerted on the
upstream side of the bump than its lee. In turn, this causes increased effective pressure
in the sediment layer upstream of the bump compared with downstream. Moreover,
if the viscosity of the sediment is much lower than that of ice, the horizontal velocity
of the interface is approximately constant (i.e., independent of position). Then, if the
sediment rheology is such that flux in a thin sediment layer increases with effective
pressure when the surface velocity of the layer is fixed, this implies that more sediment
flows into the bump than out, causing it to grow.

This mechanism can be shown to work for a variety of viscous sediment rheologies,
and numerical solutions of a simplified model show that growth of the instability
is generally unbounded before the onset of cavitation [16, 19], which occurs when
compressive normal stress in the lee of a bed bump drops to the local porewater
pressure. In this paper, we will be concerned with the extension of that model to the
case of cavitation. Our interest in this problem is largely motivated by the fact that
cavity formation introduces a nonlinearity into the model, which may be sufficient to
lead to bounded growth of the instability. Due to the complexity of the problem, we
do not, however, consider the full time-dependent problem of cavity evolution, but
restrict ourselves mostly to the case of traveling wave solutions, in the hope that these
represent the fully evolved ice-bed interface.

The paper is structured as follows. In section 2, we describe the extension of
the basic instability model to the case of cavitation. Subsequently, we formulate the
traveling wave problem in section 3 and present a method of solution based on a
classical complex variable approach. Results are discussed in section 4.

2. The model. We consider a simplified two-dimensional model for the spatially
periodic flow of ice over a thin layer of water-saturated subglacial sediment in the
absence of cavitation, as detailed in Schoof [19]. We set out the full time-dependent
model here, first in the absence of cavitation and subsequently with cavitation. The
analysis in this paper will, however, deal almost exclusively with the corresponding
traveling wave problem, which we describe in the next section.

The basic assumptions of the model derived in [19] are the following. Ice is treated
as an incompressible Newtonian fluid, while subglacial sediment is modeled as an
incompressible shear-thinning viscous material whose viscosity additionally depends
on effective pressure, defined as the difference between the ordinary pressure variable
(the spherical part of the stress tensor in the language of continuum mechanics) and
a prescribed porewater pressure. In particular, the rheology of subglacial sediment
may be taken to be of the form

Dij = KN−nτm−1τij ,(2.1)

where Dij is strain rate, N is effective pressure, and τij is deviatoric stress with

second invariant τ =
√
τijτij/2, while K, m, and n are positive constants. This

rheological model has the qualitative features that strain rate increases with stress,
as required for a viscous material, while strain rate decreases with effective pressure,
corresponding to sediment grains less able to move past each other when pressed
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harder together. The model described below makes a further approximation, treating
only the parametric limit n ≈ m � 1 in the rheology (2.1). This corresponds to a
“nearly plastic” behavior, in which shear stress is only weakly dependent on strain
rate [12]. As described in [19, section 7], this greatly simplifies expressions for volume
flux in the sediment layer and shear stress at its surface, and leads to a more tractable
ice flow problem.

Moreover, the model assumes that unstable waves generated at the ice-sediment
interface have wavelengths that are long compared with the thickness of the sediment.
Consequently, the sediment layer is treated as thin, with small surface slopes that allow
the ice flow domain to be approximated by a half-space. Treating the sediment layer
as thin further allows it to be described by a depth-integrated model that appears in
the Stokes flow problem for the ice in the form of boundary conditions at the lower
boundary. These boundary conditions can be derived essentially by integrating (2.1).
For reasons of space, we refer to [19] for a more detailed derivation of the model.

Below, x and y are Cartesian coordinates parallel and perpendicular, respectively,
to the mean bed elevation, while t is time and subscripts x, y, and t denote the
corresponding partial derivatives. u(x, y, t) is a dimensionless velocity perturbation
in the ice relative to a mean shearing flow, and p(x, y, t) a dimensionless pressure
perturbation about a mean hydrostatic pressure field. If a is the spatial period of the
bed, u = (u, v) and p satisfy Stokes’ equations on a semi-infinite strip in the upper
half-plane:

∇2u −∇p = 0, ∇ · u = 0 on (x, y) ∈ (0, a) × (0,∞),(2.2)

with periodic boundary conditions applied at x = 0 and x = a. The interface between
ice and sediment remains, at leading order, at y = 0 if waves on the bed are shallow.
We denote the amplitude of these waves by h(x, t), and sediment flux in the direction
of the x-axis by q(x, t). Effective pressure (the difference between confining normal
stress and a prescribed porewater pressure) at the sediment surface will be denoted by
N(x, t), and shear stress at the ice-sediment interface by τb(x, t). Lastly, the velocity
of the ice-sediment interface will be denoted by U . As before, all of these quantities
have been scaled as in [19] and are dimensionless. Boundary conditions for the Stokes
flow problems (2.2) are then

uy + vx → γ−1,
p → 0

}
as y → ∞,(2.3)

γ (uy + vx) = τb,
1 + p− 2vy = N,

v = Uhx + ht

⎫⎬
⎭ on y = 0.(2.4)

Above, γ > 0 is the ratio of mean dimensional effective pressure to far-field shear
stress. Hence γ−1 is a dimensionless far-field shear stress in (2.3)1, while (2.3)2 en-
sures that the pressure perturbation p vanishes at large distances from the bed. The
boundary conditions (2.4)1,2 at the bed relate the appropriate stress components in
the Stokes problem to interfacial shear stress and effective pressure, while (2.4)3 re-
lates normal velocity at the bed to the evolution of bed wave amplitude h. h itself
satisfies the evolution equation

ht + qx = 0.(2.5)

As described at the beginning of this section, interfacial shear stress τb and flux q
in the boundary conditions (2.4) must be determined through a model for the thin-
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1636 CHRISTIAN SCHOOF

film flow of subglacial sediment. With the rheological specifications based on (2.1)
described above, we find the appealingly simple (and linear) relationships

τb(x, t) = N(x, t), q(x, t) = N(x, t).(2.6)

Meanwhile, interface velocity is determined by a large-scale ice flow problem [18, 19],
and in scaled terms we can simply set

U = 1,(2.7)

while the x-component of the velocity u = (u, v) is subject to
∫ a

0
u(x, 0) dx = 0 (this

condition being necessary to ensure a unique solution for u).
As described above, the “constitutive relations” (2.6) are appropriate for a sedi-

ment layer flowing in simple shear with rheology given by (2.1) in the parametric limit
m ∼ n � 1 [19, section 7]. The relations are thus not completely general, though
rheological tests support them [12]. As described in [16, 19] more general sediment
rheologies can be introduced into the model simply by changing the prescriptions for
τb and N in (2.6). We persist with (2.6) in part because it is supported by empirical
evidence [12], and also because it is the simplest physically motivated choice we can
make, yielding a linear relationships between τb, q, and N . However, as we point out
in section 4, other rheological models for sediment may also be of practical interest,
but these introduce the additional complication of nonlinear constitutive relations in
(2.6), which are beyond the scope of this paper.

It is straightforward to show that the trivial solution h(x, t) ≡ 0 to (2.2)–(2.6) is
unstable: The model admits Fourier mode solutions of the form h(x, t) = Re(exp(ikx+
σt)), where σ = 2|k|3/(1+2ik|k|) has a positive real part, and growth of the instability
is apparently unbounded. However, this is physical only while effective pressure N is
positive everywhere, which ensures that normal stress at the top of the sediment layer
exceeds the porewater pressure within. Once N = 0 somewhere, compressive normal
stress at the top of the sediment layer at that location equals porewater pressure, and
porewater starts to leak out of the sediment. The ice loses contact with the sediment,
and a water-filled cavity forms, as also happens in glacier sliding over undeformable
beds [6, 17].

When a cavity has formed, different boundary conditions apply to (2.2) on those
parts of the bed where cavities are present from those in effect where ice is in contact
with sediment. Let the cavitated part of the bed at time t be denoted by C(t), and
the contact areas by C ′(t); the closure of C ∪ C ′ is then the interval [0, a]. The
boundary conditions (2.4) together with the constraint N ≥ 0 (which ensures that
normal stress in contact areas cannot drop below the porewater pressure) still hold
on y = 0, x ∈ C ′. On cavitated parts of the bed, we require that effective pressure
and shear stress vanish, as water pressure equals normal stress in the ice, and the
water is assumed to be inviscid. This is tantamount to setting τb = N = 0 in (2.4).
In addition, the cavity roof must be above the surface of the sediment over cavitated
parts of the bed and must satisfy a kinematic boundary condition analogous to (2.4)3.
We denote the dimensionless elevation of the cavity roof by hC(x, t) (see Figure 2.1)
and assume that the cavity roof has a low aspect ratio, comparable with that of the
sediment layer. Then we have [16, Chapter 6]

1 + p− 2vy = 0,
uy + vx = 0,

v = UhCx + hCt

⎫⎬
⎭ on y = 0, x ∈ C,(2.8)
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Ch  (x)
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h(x)sedimenth(x)

x

water−filled cavities

Fig. 2.1. Illustration of cavity and contact areas, and the definition of h and hC . The model
assumes that bed slopes are small, so that the lower boundary of the ice flow domain can be reduced
to y = 0 in dimensionless terms. Note that we generally assume discontinuities in h at downstream
endpoints of contact areas. These sediment shocks are shown as dotted lines.

while the absence of traction at the surface of the sediment in the cavities also implies

ht = 0, q = 0, on y = 0, x ∈ C,(2.9)

combined with the constraint hC > h.
In addition to the boundary conditions (2.4) and (2.8) for the two-dimensional

Stokes equations (2.2) and the evolution equation (2.5), we require jump conditions
on h and hC at the boundary points of C and C ′. Based on physical considerations
[16], we require that there be no discontinuities in the elevation of the lower boundary
of the ice. Defining hC everywhere as the scaled elevation of the base of the ice,
so that hC(x) = h(x) for x ∈ C ′, this implies that hC is continuous across the
endpoints of C and C ′. It turns out that the same degree of continuity cannot be
imposed on the sediment wave amplitude h, and a discontinuity must be expected
at at least one endpoint of each individual contact area. Such discontinuities are not
entirely unexpected: For the somewhat similar problem of dune formation in deserts
and on river beds [9], the equivalent would be a slip face. The flow of sediment
close to a contact point where h is discontinuous cannot be resolved by our thin-film
approximation for the sediment. However, instead of attempting to solve an extremely
complicated local sediment flow problem, we argue heuristically. We assume that the
propagation speed of the contact point is determined by a Rankine–Hugeniot condition
which ensures conservation of sediment:

Vs = [q]+−/[h]+−,(2.10)

where Vs is the propagation speed of the sediment shock and [·]+− denotes the jump in
the bracketed quantity across the shock. With q = N , it follows from the continuity of
hC and the inequality constraints on h and N that the jump in q must have the same
sign as the jump in h, and hence the sediment shock must propagate downstream
with Vs > 0.

If there were a sediment shock at the upstream end of a contact area, then effective
pressure would be positive downstream of the contact point and zero in the cavity.
The resulting pressure difference should drive a local sediment flow (not resolved
by our thin-film approximation) into the cavity, that is, in the upstream direction
and therefore opposite to that required by (2.10). As a consequence, we permit
discontinuities in h only at the downstream ends of contact areas and require that h
be continuous across the upstream end of each contact area.

As we shall see below, these jump conditions on h and hC lead to an apparently
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well-posed traveling wave problem. Whether or not they can in fact be applied to the
general time-dependent problem is a matter for future research.

3. Traveling waves. In what follows, we consider solutions in which h and hC

depend on x and t only through the traveling wave coordinate

η = x− V t,(3.1)

where V > 0 is the unknown pattern speed of the traveling wave. Note that negative
pattern speeds are not possible because sediment shocks must propagate downstream,
as explained above. Writing ∇̂ = (∂/∂η, ∂/∂y), the model can then be cast in the
form

∇̂2u − ∇̂p = 0, ∇̂ · u = 0 on (η, y) ∈ (0, a) × (0,∞),(3.2)

uy + vη → γ−1,
p → 0

}
as y → ∞,(3.3)

γ (uy + vη) = τb,
1 + p− 2vy = N,

v = (U − V )h′,
q′ − V h′ = 0,

N ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on η ∈ Ĉ ′, y = 0,(3.4)

uy + vη = 0,
1 + p− 2vy = 0,

v = (U − V )h′
C ,

h′ = 0,
hC > h

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on η ∈ Ĉ, y = 0,(3.5)

q = N on η ∈ Ĉ ′,(3.6)

q = 0 on η ∈ Ĉ,(3.7)

τb = N, U = 1.(3.8)

Here primes on h, hC , and q denote differentiation with respect to η, and Ĉ ′ = C ′(0)
and Ĉ = C(0) denote contact and cavity areas, respectively, at the bed in the (η, y)
coordinate system. In addition, we consider only the case of a single cavity per bed
period, and without further loss of generality we can set

Ĉ ′ = (0, b), Ĉ = (b, a),(3.9)

where the contact point η = b is to be determined as part of the solution. As before, we
impose periodic boundary conditions on η = 0 and η = a. The continuity requirements
on h and hC at the contact points are

h(0+) = h(a−) = hC(a−), h(b−) = hC(b+),(3.10)

where superscripts + and − indicate limits taken from above and below, respectively
(and where, in an abuse of notation, we have replaced the arguments (x, t) by η).
Lastly, the jump condition (2.10) for a sediment shock at η = b propagating at the
pattern speed Vs = V becomes

V = −q(b−)/(h(b+) − h(b−)),(3.11)

where we recognize that q(b+) = 0 from (3.7).
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Some small simplifications are immediately possible. As the model is invariant
under changes of h and hC by the same constant, we can without loss of generality
set h = 0 in Ĉ by (3.5)4. (3.4)4 and (3.11) combined then require that

q = V h on Ĉ,(3.12)

and the jump conditions on h and hC become

h(0+) = hC(a−) = 0, h(b−) = hC(b+).(3.13)

Equations (3.12) and (3.13) then replace (3.4)4, (3.10), and (3.11) in the subsequent
analysis.

The model described above is in many ways similar to the viscous contact prob-
lems considered by Fowler [6] and Schoof [17], in the sense that we have a Stokes flow
problem with mixed boundary conditions prescribed on parts of the boundary which
are not known a priori but must be found as part of the solution so as to satisfy the
inequality constraints (3.4)5 and (3.5)5. This introduces an important nonlinearity
into the problem which is missing in the original linear evolution problem and, as we
shall see, allows for the existence of (nontrivial) traveling wave solutions, which are
not possible without cavitation. The crucial difference between the model considered
here and that in [6, 17] is that the bed elevation h is not fixed here but forms part of
the solution. This renders the problem considerably more complicated.

The remainder of this section will be devoted to constructing a method of solution.
Our approach consists of the following steps. First, we represent the solution of the
Stokes equations (3.2) in terms of complex potentials. When mapped conformally so
as to make use of the periodic boundary conditions at the sides of the domain, the
boundary conditions (3.3)–(3.5) lead to a pair of Hilbert problems for these complex
potentials, which admit explicit solutions in terms of the unknown functions N and
τb and the contact point position b. Finally, applying the remaining conditions (3.8),
(3.12), and (3.13) allows the problem of finding N and τb to be recast as an eigenvalue
problem for h (which simultaneously determines the pattern speed V ), and b can be
determined through an additional integral constraint which ensures that the lower ice
surface has no discontinuities.

3.1. Complex variable formulation. We introduce a stream function ψ such
that

u = ψy + y/γ, v = −ψη,(3.14)

where the additional shearing term in the definition of u accounts for the far-field
shear stress. Further, we define the complex variables z = η + iy and z = η − iy. ψ
satisfies the biharmonic equation, which can be written in terms of z and z as

∇̂4ψ = 4ψzzzz = 0.(3.15)

Using standard methods in complex analysis [5], ψ can be shown to take the general
form

ψ = (z − z)θ(z) + φ(z) + (z − z)θ(z) + φ(z)(3.16)

for z in the semi-infinite strip 0 < η < a, 0 < y, where θ and φ are analytic functions
and an overbar denotes complex conjugation. Furthermore, the Stokes equations (3.2)
become

∇̂2ψy = pη, −∇̂2ψη = py,(3.17)
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which are the Cauchy–Riemann relations for p + i∇̂2ψ (i.e., pressure p and vortic-
ity ∇̂2ψ are harmonic conjugates). Using standard differentiation rules [5], ∇̂2ψ =
4(θ′(z) + θ′(z)) = 8Im(iθ′(z)), where a prime denotes differentiation. Consequently,

p = C0 + 8Re(iθ′(z)) = C0 + 4i(θ′(z) − θ′(z)),(3.18)

where C0 is a real constant. The value of this constant can be chosen arbitrarily: If
C0 �= 0, we can add iC0z/8 to θ(z) and simultaneously add iC0z

2/8 to φ(z) while
leaving the stream function ψ in (3.16) unchanged. By redefining θ and φ in this way,
we ensure that C0 = 0 in (3.18), and we will henceforth assume this to be the case.

In order to satisfy the periodic boundary conditions imposed on the problem, it
suffices to ensure that u, v, and p can be extended to sufficiently smooth functions in
the half-space y > 0, which are periodic in η with period a. Anticipating therefore that
p and vorticity ∇2ψ can be extended to harmonic functions which are appropriately
periodic, we conclude that θ′(z) can be continued to an analytic function in the upper
half-plane which is periodic in Re(z) with period a. Furthermore, we have for y > 0

u = 4yRe [θ′(z)] + 2Im [2θ(z) − φ′(z)] ,(3.19)

v = −4yIm [θ′(z)] − 2Re [φ′(z)] .(3.20)

Hence, if θ′(z) can be continued to a periodic analytic function, it suffices to ensure in
addition that Im[2θ(z) − φ′(z)] and Re[φ′(z)] can be extended to harmonic functions
in the upper half-plane with period a in Re(z). From the periodicity of Re[φ′(z)],
it follows that φ′′(z) can be continued to an appropriately periodic analytic function
in the entire upper half-plane Im(z) > 0. Moreover, the periodicity of Re[φ′(z)] and
Im[2θ(z) − φ′(z)] are equivalent to

Re [φ′(a + iy) − φ′(iy)] = Re

[∫ a

0

φ′′(η + iy) dη

]
= 0,(3.21)

Im

[∫ a

0

2θ′(η + iy) − φ′′(η + iy) dη

]
= 0(3.22)

for all y > 0.
We complete our complex variable formulation by casting the boundary conditions

(3.3)–(3.5) in terms of θ and φ. At the lower boundary y = 0

2i(φ′′(η) − φ′′(η)) =

{
N(η) − 1, η ∈ Ĉ ′,

−1, η ∈ Ĉ,
(3.23)

2(2θ′(η) − φ′′(η) + 2θ′(η) − φ′′(η)) =

{
γ−1 (τb(η) − 1) , η ∈ Ĉ ′,

−γ−1, η ∈ Ĉ,
(3.24)

−(φ′(η) + φ′(η)) =

{
(U − V )h′(η), η ∈ Ĉ ′,

(U − V )h′
C(η), η ∈ Ĉ,

(3.25)

combined with (3.8), (3.12), and (3.13). Naturally, θ′, φ′, and φ′′ are defined on
the real axis as boundary values taken as z approaches the axis from above. As
Im(z) = y → ∞, we have from (3.3)

4i
[
θ′(z) − θ′(z)

]
→ 0,(3.26)

−2
[
φ′′(z) − 2iyθ′′(z) − 2θ′(z) + φ′′(z) + 2iyθ′′(z) − 2θ′(z)

]
→ 0.(3.27)
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3.2. Reformulation as a Hilbert problem. In order to exploit the periodicity
of the problem, and to obtain a straightforwardly solved pair of Hilbert problems for
proxies of θ′ and φ′′, we map conformally to the ζ-plane as

ζ = exp(i2πz/a), ξ = exp(i2πη/a),(3.28)

where 0 < η = Re(z) < a. We denote by Γ and Γ′ the images of Ĉ and Ĉ ′ under this
mapping. Γ and Γ′ are then disjoint arcs of the unit circle in the ζ-plane, and the
closure of Γ ∪ Γ′ is the unit circle itself. We also define Ñ(ξ) = N(η), τ̃b(ξ) = τb(η),
and let

Ω(ζ) =

{
φ′′(z), |ζ| > 1,
φ′′(z), 0 < |ζ| < 1,

(3.29)

ω(ζ) = φ′(z), 0 < |ζ| < 1,(3.30)

Θ(ζ) =

{
θ′(z), |ζ| > 1,
θ′(z), 0 < |ζ| < 1.

(3.31)

From the Schwarz reflection principle and the periodicity requirements above, it fol-
lows that Ω and Θ are analytic in the finite ζ-plane cut along the unit circle and
punctured at the origin, while ω is analytic inside the open unit disk cut along the
nonnegative part of the real axis in the ζ-plane, where ω may be discontinuous because
we know only that Re(φ′) is periodic. As we shall show later, ω is in fact analytic
across that branch cut. Moreover, using d/dz = (i2π/a)ζ d/dζ,

Ω(ζ) = (i2π/a)ζω′(ζ)(3.32)

for |ζ| < 1, except on the branch cut.
The boundary conditions (3.23)–(3.25) become

2i
[
Ω+(ξ) − Ω−(ξ)

]
=

{
Ñ(ξ) − 1, ξ ∈ Γ′,
−1, ξ ∈ Γ,

(3.33)

2
[
2Θ+(ξ) − Ω+(ξ) + 2Θ−(ξ) − Ω−(ξ)

]
=

{
γ−1(τ̃b(ξ) − 1), ξ ∈ Γ′,
−γ−1, ξ ∈ Γ,

(3.34)

−2Re(ω+(ξ)) =

{
(U − V )h′(η), ξ ∈ Γ′,
(U − V )h′

C(η), ξ ∈ Γ,
(3.35)

where superscripts + and − denote limits taken as the unit circle is approached from
within and without, respectively. The first two of these equations take the form
of standard Hilbert problems, whose solutions depend on the behavior of Ω and Θ
at infinity. Because of the symmetry inherent in the definitions of Ω and Θ, their
behavior at infinity is determined by their behavior at the origin. From (3.27), we
have for ζ → 0

4i
[
Θ(ζ) − Θ(ζ)

]
→ 0,(3.36)

Ω(ζ) + Ω(ζ) − 2Θ(ζ) − 2Θ(ζ) − 2 log |ζ|
[
ζΘ′(ζ) + ζΘ′(ζ)

]
→ 0.(3.37)

It follows from (3.36) that Θ is analytic at the origin with Θ(0) = C1, where C1 is
a real constant. Hence limζ→0 ζ log |ζ|Θ′(ζ) = 0, and from (3.37) it follows that Ω is
also analytic at the origin with Ω(0) = 4C1 + iC2, where C2 is another real constant.
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It can then be shown from the periodicity requirements (3.22) that both C1 and C2

vanish. Specifically, (3.22) can be written as

Re

[
a

i2π

∮
L

Ω(ζ) dζ

ζ

]
= Im

[
a

i2π

∮
L

[2Θ(ζ) − Ω(ζ)]

ζ
dζ

]
= 0,(3.38)

where L is a circular contour about the origin with radius less than 1, traversed
anticlockwise. Applying the residue theorem, this implies that C1 = C2 = 0, and
hence

Ω(0) = Θ(0) = 0.(3.39)

From (3.39) and the definitions of Ω and Θ in (3.31) it finally follows that

Ω(ζ) = Ω(1/ζ), Ω(∞) = 0, Θ(ζ) = Θ(1/ζ), Θ(∞) = 0,(3.40)

which taken together also ensure the appropriate behavior at the origin.
We can now solve (3.33), (3.34), and (3.40) explicitly in terms of the as yet

unknown effective pressure N(η) and shear stress τb(η). For the sake of simplicity,
define Ξ as a proxy for Θ through

Ξ(ζ) =

{
2Θ(ζ) − Ω(ζ), |ζ| < 1,
−2Θ(ζ) + Ω(ζ), |ζ| > 1,

(3.41)

so that (3.34) becomes

Ξ+(ξ) − Ξ−(ξ) =

{
γ−1(τ̃b(ξ) − 1), ξ ∈ Γ′,
−γ−1, ξ ∈ Γ,

(3.42)

subject to Ξ(∞) = 0, Ξ(ζ) = −Ξ(1/ζ). Assuming that Ñ and τ̃b are Hölder contin-
uous and bounded on Γ′ (we exclude the possibility of integrable singularities at the
endpoints of Γ′ because N and τb are related to h through (3.8) and (3.12), and h is
clearly bounded), (3.33) and (3.42) admit solutions vanishing at infinity of the form
(see [14])

Ω(ζ) = − 1

4π

∫
Γ′

Ñ(ξ)

ξ − ζ
dξ +

1

4π

∫
Γ∪Γ′

1

ξ − ζ
dξ,(3.43)

Ξ(ζ) = γ−1

[
1

2πi

∫
Γ′

τ̃b(ξ)

ξ − ζ
− 1

2πi

∫
Γ∪Γ′

1

ξ − ζ
dξ

]
,(3.44)

where integrals over Γ and Γ′ are taken (here and in what follows) as the unit circle
is traversed in the anticlockwise direction. Note that the second integral on the right-
hand side of each equation may be recognized as

∫
Γ∪Γ′(ξ− ζ)−1 dξ = 2πi if ζ is inside

the unit circle,
∫
Γ∪Γ′(ξ − ζ)−1 dξ = 0 for ζ outside the unit circle.

It remains to ensure that Ω and Ξ satisfy (3.40)1,3. Using the fact that Ñ is real,
while ξ = 1/ξ and dξ = −1/ξ2 dξ, it follows after some manipulation that

Ω(1/ζ) = − 1

4π

∫
Γ′
Ñ(ξ)

[
1

ξ − ζ
− 1

ξ

]
dξ +

1

4π

∫
Γ′∪Γ

[
1

ξ − ζ
− 1

ξ

]
dξ,(3.45)

with a similar expression for Ξ(1/ζ). In order to satisfy Ω(ζ) = Ω(1/ζ) and Ξ(ζ) =

−Ξ(1/ζ), we therefore require∫
Γ′

Ñ(ξ)

ξ
dξ −

∫
Γ∪Γ′

dξ

ξ
= 0,

∫
Γ′

τ̃b(ξ)

ξ
dξ −

∫
Γ∪Γ′

dξ

ξ
= 0.(3.46)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CAVITATION ON DEFORMABLE GLACIER BEDS 1643

0 1
ζ

ζ
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c

ξ

1

’

(a) (b)

0

branch cuts

ζ

Fig. 3.1. The contour L in (3.48) is shown in panel (a), where solid lines indicate branch cuts
in ω. The branch cuts for log(ξ′/ζ − 1) (solid line) and log(ζ) (dashed line) are shown in panel (b).

In real terms, these equations are simply

1

a

∫ b

0

N(η) dη = 1,
1

a

∫ b

0

τb(η) dη = 1,(3.47)

which physically state that the mean shear stress at the ice-sediment interface is
the far-field shear stress, and that mean effective pressure is fixed by hydrostatic ice
overburden and by porewater pressure in the bed (the difference between the two being
scaled to unity). With the particular prescription of τb in (3.8), the two equations in
(3.47) are identical, and we are left with the single constraint (3.47)1, which states
that mean effective pressure at the bed is fixed at unity.

The expressions for Ω and Ξ in (3.43) and (3.44) as well as the solvability con-
straints in (3.47) contain the unknown functions N and τb, which depend on sediment
thickness h through the constitutive relations (3.6) and (3.8) as well as through (3.12),
while h conversely depends on N and τb through (3.35). Moreover, the limits of in-
tegration appearing in (3.43) and (3.44) are not known a priori, as we have yet to
determine the position of the contact point η = b. In the next section, we show how
h (and hence N and τb) can be calculated from an eigenvalue problem arising from
(3.35), which also determines the pattern speed V as its eigenvalue. Additionally, the
continuity requirements in (3.13) allow us to derive an integral constraint which fixes
the position of the contact point b.

3.3. Reduction to an eigenvalue problem. We exploit (3.35), (3.32), and
(3.43) as well as (3.6), (3.12), (3.13) and the inequality constraints in (3.4) and (3.5)
in order to obtain integral equations for h and hC . Our first task is to calculate ω,
which determines the bed slopes h′ and h′

C through (3.35). For ζ0 and ζ in the open
unit disk of the ζ-plane cut along the nonnegative half of the real axis, where ω has
a branch cut, we have from (3.32)

ω(ζ) − ω(ζ0) =
a

i2π

∫
L

Ω(ζ ′)

ζ ′
dζ ′,(3.48)

where primes on ζ ′ indicate a dummy variable, not differentiation. L is any arc
connecting ζ0 to ζ such that L lies entirely in the open unit disk and does not cross
the branch cut in ω (see Figure 3.1). It follows from (3.48) that ω is in fact continuous
and therefore analytic across that branch cut: Let ζc lie on the branch cut, and let
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ζ0 and ζ approach ζc from the first and fourth quadrants, respectively. In the limit,
L becomes a closed contour encircling the origin (Figure 3.1), and from the residue
theorem we have

ω(ζ) − ω(ζ0) → aΩ(0) = 0,(3.49)

so ω(ζc) can be assigned a unique limiting value regardless of which side the real axis
is approached from. As a corollary, we can in fact allow the arc L above to cross the
positive half of the real axis (which later allows us to establish that ω(ζ) has a unique
limit when ζ → 1 from inside the unit circle).

Using (3.43), we can evaluate the integral in (3.48) explicitly:

ω(ζ) − ω(ζ0) = − a

i8π2

∫
Γ′
Ñ(ξ′)

[
log

(
ξ′

ζ0
− 1

)
− log

(
ξ′

ζ
− 1

)]
dξ′

ξ′

+
a

4π
[log(ζ) − log(ζ0)],(3.50)

where for definiteness log(ξ′/ζ0−1) and log(ξ′/ζ−1) denote a branch of the logarithm
which has a branch cut as indicated in Figure 3.1. Similarly, log(ζ0) and log(ζ) denote
a branch which has a branch cut along the positive half of the real axis.

Next, we let ζ → ξ and ζ0 → 1 from inside the unit circle. It is easy to show
from (3.48), Cauchy’s theorem, and the continuity properties of Ω [14, pp. 53–55 and
Chapter 4] that the limit ω+(ξ) exists and is continuous as a function of ξ for all ξ
on the unit circle. Importantly, this result holds true at both endpoints of Γ′, where
ξ = 1 and ξ = exp(i2πb/a) (with continuity at ξ = 1 resulting from the continuity of
ω across the real axis). Using (3.35) and (3.50) and taking care with the branches of
the logarithms involved, we find after some elementary manipulations that

−2Re(ω+(ξ) − ω+(1)) = − 1

2π

∫ b

0

N(η′) log

∣∣∣∣ sin(π(η′ − η)/a)

sin(πη′/a)

∣∣∣∣ dη′

=

{
(U − V )(h′(η) − h′(0+)), η ∈ Ĉ ′,

(U − V )(h′
C(η) − h′(0+)), η ∈ Ĉ,

(3.51)

where ξ = exp(i2πη/a) as before and log(·) is the ordinary logarithm defined for
positive real numbers.

To proceed further, we require h′(0+). Since ω+ is continuous at ξ = 1, we
conclude from (3.35) that h′

C(a−) = h′(0+), provided V �= U . In other words, the
continuity of the y-component of velocity precludes any breaks in the slope of the
lower boundary of the ice. The local behavior of h and hC near the contact points η =
0, η = a then requires that h′

C(a−) = h′(0+) = 0 if the inequality constraints (3.4)5
and (3.5)5 on N and hC are to be satisfied close to the contact points. To see this,
note that the cavity roof is above the sediment surface and we have hC(η) > h(η) = 0
for b < η < a, while the cavity roof recontacts the bed at η = a, so that hC(a−) = 0
and hence h′(0+) = h′

C(a−) ≤ 0. Meanwhile, h(η) ≥ 0 in contact areas 0 < η < b
(as flux V h = q = N ≥ 0 and V > 0), and sediment thickness is continuous at the
downstream cavity endpoint, so that h(0) = 0, which implies h′

C(a−) = h′(0+) ≥ 0.
These two inequalities on h′(0+) can be satisfied simultaneously only if bed and cavity
roof slope vanish at the downstream cavity endpoint, h′(0+) = h′

C(a−) = 0.

An integral equation for h is now straightforward to obtain by integrating (3.51)
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once more and using h(0+) = 0:

(U − V )h(η) =

∫ η

0

(U − V )h′(η′) dη′

= − 1

2π

∫ η

0

∫ b

0

N(η′) log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′ dη′′

= − 1

2π

∫ b

0

[∫ η

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′(3.52)

for η ∈ (0, b). As hC(a−) = 0 from (3.13), the cavity roof similarly satisfies

(U − V )hC(η) = −
∫ a

η

(U − V )hC(η′) dη′

=
1

2π

∫ b

0

[∫ a

η

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′(3.53)

for η ∈ (b, a). Solutions of these integral equations automatically satisfy (3.13)1. It
remains to ensure that hC(b+) = h(b−). Using (3.52) and (3.53), this can be written
in the form

1

2π

∫ b

0

[∫ a

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′
]
N(η′) dη′ = 0.(3.54)

This equation ensures that there is no discontinuity in the ice surface at η = b, but
it generally requires a discontinuity in h (in the sense that (3.54) does not ensure
h(b−) = 0). This justifies our statement in section 2 that we cannot generally expect
sediment thickness to be continuous across all contact points; this is at least true for
traveling wave solutions.

Equation (3.54) allows the integrals above to be simplified somewhat. The kernel
on the left-hand side of (3.54) can be rewritten as∫ a

0

log

∣∣∣∣ sin(π(η′ − η′′)/a)

sin(πη′/a)

∣∣∣∣ dη′′(3.55)

=

∫ a

0

1

2

{
log

[
4 sin2

(
π(η′ − η′′)

a

)]
− log

[
4 sin2

(
πη′

a

)]}
dη′′.

But, as shown in the appendix,∫ a

0

log
[
4 sin2(π(η′ − η′′)/a)

]
dη′′ =

∫ a

0

log
[
4 sin2(πη′′/a)

]
dη′′ = 0,(3.56)

and (3.54) becomes more simply

∫ b

0

log
[
4 sin2(πη/a)

]
N(η) dη = 0.(3.57)

Similarly rewriting the integral kernel in (3.52) and (3.53) and using (3.56) and (3.57)
yields the integral equations

(U − V )h(η) = − 1

4π

∫ b

0

{∫ η

0

log

[
4 sin2

(
π(η′ − η′′)

a

)]
dη′′

}
N(η′) dη′(3.58)
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for η ∈ (0, b), and

(U − V )hC(η) = − 1

4π

∫ b

0

{∫ η

0

log

[
4 sin2

(
π(η′ − η′′)

a

)]
dη′′

}
N(η′) dη′(3.59)

for η ∈ (b, a).
On writing N = q = V h and setting U = 1 from (3.6) and (3.12), the structure

of the problem finally becomes apparent: For a given contact point position b, h(η)
satisfies the eigenvalue problem

λh(η) +

∫ b

0

k(η, η′)h(η′) dη′ = 0(3.60)

for η ∈ (0, b), where the kernel k is given by

k(η, η′) =
1

4π

∫ η

0

log
(
4 sin2 [π(η′ − η′′)/a]

)
dη′′,(3.61)

and the real eigenvalue λ is a proxy for pattern velocity V , λ = (1 − V )/V . The
contact point b is constrained by (3.54), which reads

∫ b

0

log
[
4 sin2 (πη/a)

]
h(η) dη = 0.(3.62)

Finally, the eigenfunction h(η) satisfies the normalization condition (3.47), which
becomes

1

a

∫ b

0

h(η) dη = λ + 1.(3.63)

Once h, λ, and b have been found, the cavity roof shape hC(η) for η ∈ (b, a) can be
calculated from (3.53):

λhC(η) = −
∫ b

0

k(η, η′)h(η′) dη′.(3.64)

As mentioned previously, we allow only positive pattern speeds V > 0, so λ > −1,
and the mean of h is positive by (3.63). A solution h must further satisfy the stronger
pointwise constraint h(η) ≥ 0 for η ∈ (0, b), and similarly hC(η) > 0 for η ∈ (b, a).
It is by no means obvious that this will be the case: We have so far employed the
inequality constraints on h and hC only locally in order to determine the slopes of
h and hC at the contact points η = 0, η = a. Compliance with these constraints
must therefore be checked a posteriori once a solution has been found. Further,
our solution of the Hilbert problems (3.33) and (3.42) requires N(η) and τb(η) to be
Hölder continuous on C ′; that is, h(η) must be Hölder continuous on (0, b) and (to
make sense of the jump conditions (3.13)) continuous up to η = 0 and η = b from the
left and right, respectively. Moreover, h(η) must satisfy the original integrodifferential
equation (3.51), rather than simply the integrated version (3.52). In the appendix,
we show that any continuous solution h ∈ C([0, b]) of the eigenvalue problem (3.60)–
(3.62) does in fact satisfy this equation and is in C1([0, b]), which takes care of the
Hölder continuity of h. Hence it is sufficient to look for continuous h ∈ C([0, b]).
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3.4. Numerical method. In order to eliminate the arbitrary wavelength a from
the eigenvalue problem, we define

X = η/a, B = b/a, μ = λ/a2 = (1 − V )/(a2V ),

S(X) = h(η), SC(X) = hC(η).(3.65)

The equations we wish to solve are then

μS(X) +
1

4π

∫ B

0

[∫ X

0

log
[
4 sin2(π(X ′ −X ′′))

]
dX ′′

]
S(X ′) dX ′ = 0,(3.66)

∫ B

0

log
[
4 sin2(πX)

]
S(X) dX = 0,(3.67)

where the eigenfunction S is to be normalized as

∫ B

0

S(X) dX = 1 + a2μ.(3.68)

We are not interested in calculating the entire spectrum of the integral operator
in (3.66), but merely seek real eigenvalues μ > −1/a2. To this end, we can exploit
the structure of the integral operator by rewriting (3.66) in the form

μS(X) +
1

4π

∫ B

0

[∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S(X ′) dX ′

= − 1

4π

∫ B

0

[∫ X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S(X ′) dX ′.(3.69)

The right-hand side of this equation is simply a constant, while the kernel of the
convolution-type integral operator on the left-hand side is antisymmetric and therefore
has purely imaginary eigenvalues. It follows that the constant on the right-hand
side cannot vanish unless we have the trivial solution S ≡ 0, which is, however,
precluded by the normalization condition (3.68). If we dispense temporarily with this
normalization condition by rescaling S—which we are at liberty to do because (3.66)
and (3.67) are homogeneous in S—we can therefore fix the constant on the right-hand
side of (3.69) at unity. Denoting this rescaled version of S by S̃, we obtain the pair
of equations

μS̃(X) +
1

4π

∫ B

0

[∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S̃(X ′) dX ′ = 1,(3.70)

− 1

4π

∫ B

0

[∫ X′

0

log
[
4 sin2(πX ′′)

]
dX ′′

]
S̃(X ′) dX ′ = 1.(3.71)

The advantage of (3.70) is precisely that the kernel of the integral operator on the
left-hand side is antisymmetric and hence has purely imaginary eigenvalues. By the
Fredholm alternative, (3.70) has a unique solution S̃(X;μ,B) ∈ C([0, B]) for every



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1648 CHRISTIAN SCHOOF

real nonzero μ and every B ∈ (0, 1]. We denote this solution by S̃(X;μ,B). In terms
of S̃(X;μ,B), equations (3.71) and (3.67) can then be written in the form

f1(μ,B) :=
1

4π

∫ B

0

[∫ X

0

log
[
4 sin2(πX ′)

]
dX ′

]
S̃(X;μ,B) dX + 1 = 0,(3.72)

f2(μ,B) :=

∫ B

0

log
[
4 sin2(πX)

]
S̃(X;μ,B) dX = 0.(3.73)

The task of finding μ and B can therefore be reduced to solving two nonlinear equa-
tions, which must be done numerically. Here we use a backtracking line-search modi-
fication of Newton’s method [4], where the Jacobian is approximated by finite differ-
ences.

In order to evaluate the functions f1(μ,B) and f2(μ,B), S̃(X;μ,B) must be
calculated from (3.70). We use a degenerate kernel approximation [2, Chapter 2]: As
shown in the appendix, the kernel

K(X −X ′) =
1

4π

∫ X−X′

0

log
[
4 sin2(πX ′′)

]
dX ′′(3.74)

can be approximated uniformly by the truncated Fourier series

Kn0
(X −X ′) =

n0∑
n=−n0, n �=0

i exp(i2nπX) exp(−i2nπX ′)

8π2|n|n(3.75)

as n0 → ∞. Replacing K(X −X ′) by Kn0(X −X ′), the solution of (3.70) follows the
standard method for degenerate kernels.

4. Results and discussion. Regardless of the initial guess for μ and B, only a
single solution was found numerically, with μ = 2.971× 10−3 and B = 0.2285. Visual
inspection of the surfaces generated by f1 and f2 also suggests that this solution is
unique. In Figure 4.1, we plot the corresponding shape of S(X) and SC(X), nor-

malized so that
∫ B

0
S(X) dX = 1 (formally, this is (3.68) with a = 0, that is, the

short-wave limit). The sediment in the traveling wave is confined to a relatively short
wedge upstream of an extended cavity, and the vanishing sediment surface and cavity
roof slopes at the contact points X = 0, 1 are clearly visible. Moreover, the solution
appears to satisfy the constraints S(X) ≥ 0 for X ∈ (0, B), SC(X) > 0 for X ∈ (B, 1).
Note that a solution S(X) for a given wavelength a �= 0 can be obtained from that
plotted in Figure 4.1 simply by multiplying it by 1 + a2μ. This ensures that the
normalization condition (3.68) is satisfied. Since the amplitude of S varies with wave-
length as 1+a2μ, we see that long waves are also taller than short ones. Furthermore,
the pattern speed V can be calculated as V = 1/(1 + a2μ), which states that pattern
speed is inversely proportional to amplitude and hence that shorter waves travel faster
than longer ones. Moreover, since μ > 0, the pattern speed V is always less than the
ice velocity U . If we take a to be given as the fastest growing wavelength in the
original instability model in section 2, then a = 2π[2/

√
3]1/2 = 6.752 and V = 0.881.

These traveling waves are advected downstream at 88% of the velocity of ice at the
bed, and their amplitude is 1.135 times that shown in Figure 4.1.

The existence of a traveling wave solution suggests that cavity formation may
be sufficient to lead to bounded growth in the instability mechanism proposed by
Hindmarsh [11] and Fowler [8]. However, it also poses some interesting open questions
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Fig. 4.1. Solution S(X) for sediment surface elevation and SC(X) for cavity roof elevation,

normalized so that
∫ B
0 S(X) dX = 1 and extended periodically. The sediment shock at X = B is

shown as a dashed vertical line.

regarding the dynamical problem of section 2: First, are the traveling waves described
here stable to small perturbation, and if so, does their stability depend on their
wavelength? Second, how do waves of different wavelengths interact? Do shorter
waves merge with larger ones, and does wavelength coarsening occur? The first of
these questions may be amenable to a complex variable approach of the type used
above, using an appropriate linearization. The second is much harder and requires an
understanding of the fully nonlinear time-dependent problem.

Physically, our results also pose some additional questions. Following [11, 8],
our model assumes that porewater pressure in the sediment, and hence mean effective
pressure, are fixed by a pre-existing subglacial drainage system, most likely taking the
form of channels at the ice-bed interface [15]. However, once cavities have formed, it
is likely that they will serve as both storage volume and conduits for water flowing
beneath the glacier, and that drainage through these cavities will be instrumental in
controlling water pressures at the bed. The simplest way to understand how this type
of drainage might work is by considering cavities as a kind of macroscopic pore space,
and to consider drainage through cavities at the bed as being a two-dimensional
analogue of drainage in ordinary porous media, giving rise to a Biot-type problem
[7, 10] for water pressure on an outer length scale associated with the length of the
glacier as a whole (which is assumed to be large compared with the instability length
scale considered in the model studied in this paper). The problem with applying this
approach here is that the size of cavities increases with mean effective pressure (scaled
to unity in the dimensionless model), as can be shown from the scalings used in [19].
Specifically, the dimensional scale for h is

[h] =
[N ]

(n− 2)(1 − φ)(ρs − ρw)g
,

where [N ] is mean effective pressure at the bed (“mean” being an average taken over
the cavity length scale), n is an exponent in the assumed power-law rheology for
sediment (which gives rise to the constitutive relations for shear stress τb and flux q
in (2.6) for n � 1; see [19]), φ is the porosity of the sediment, ρs and ρw are the
densities of sediment grains and of water, and g is acceleration due to gravity. Hence
[h] increases linearly with effective pressure, and it follows that cavity size decreases
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with water pressure. This in turn means that the advocated Biot-type drainage model
takes the form of a backward diffusion problem and is therefore ill-posed.

It is unclear to what extent this result is due to the particular rheological model
employed for subglacial sediment, and an obvious avenue for further research is to
consider alternative prescriptions for τb and q from those introduced in (2.6). The
eigenvalue problem (3.58) combined with constraints of the form (3.47) and (3.54)
generalizes relatively easily to other forms of τb and q, though the resulting nonlinear
eigenvalue problem is considerably more complicated [16], and we leave a solution as
an open problem.

Appendix. Smoothness of solutions. It can be shown in the usual way from
the Arzelà–Ascoli theorem that the integral operator in (3.70) is compact on C([0, B]),
and the antisymmetry of the kernel further ensures that all its eigenvalues are purely
imaginary. By the Fredholm alternative [3, Chapter 7.5], the integral equation (3.70)
therefore has a unique solution in C([0, B]) for every real μ. In what follows, we
will show that this solution is in fact in C1([0, B]) and satisfies the integrodifferential
equation (3.51). In the process, we will also prove (3.56) and show that the degenerate
kernel approximation (3.75) converges uniformly to K in the limit n0 → ∞.

At issue is thus whether a solution of (3.70) satisfies (3.51), which in view of
(3.54), (3.6), (3.12), and the rescaling in (3.65) may be rewritten in the form

− 1

4π

∫ b

0

log
(
4 sin2[π(X −X ′)]

)
S̃(X) dX ′ = μS̃′(X)(A.1)

for X ∈ (0, B). If S̃ ∈ C([0, B]) satisfies (A.1), it follows immediately from the prop-
erties of convolution integrals that S̃′ ∈ C([0, B]), and S̃ ∈ C1([0, B]), as required.
Equation (A.1) can be obtained by differentiating (3.70) (noting that the right-hand
side is simply a constant) and by exchanging the order of differentiation and integra-
tion on the integral term. In order to prove that integration and differentiation do
commute—which is not obvious because the integrand in (A.1) has a singularity—we
approximate the integrand by a sequence of bounded integrands.

A.1. Degenerate kernel approximation. The power series

∞∑
n=1

ζn−1

n
= − log(1 − ζ)

ζ

has radius of convergence one, and therefore converges everywhere inside the unit
circle in the complex ζ-plane. The branch of the logarithm must be continuous on the
open unit disk with log(1) = 0. Note that the singularity at the origin is removable:
We can assign − 1

ζ log(1−ζ) its limiting value of 1. The series also converges pointwise

on the unit circle except at ζ = 1 [1, p. 409]. For ξ on the unit circle and r ∈ (0, 1),
we have ∣∣∣∣∣

n0∑
n=1

rn−1ξn

n

∣∣∣∣∣ ≤
n0∑
n=1

∣∣∣∣rn−1ξn

n

∣∣∣∣ =

n0∑
n=1

rn−1

n
<

log(1 − r)

r
(A.2)

for any finite n0. Since 1
r log(1 − r) is integrable over r ∈ (0, 1), so is

∞∑
n=1

rn−1ξn

n
= − log(1 − rξ)

rξ
ξ,
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of integration

original path
of integration
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ξ

ξ

Fig. A.1. Integration paths in the degenerate kernel approximation of K(x).

and the order of summation and integration may be interchanged by the dominated
convergence theorem, i.e.,

∫ 1

0

− log(1 − rξ)

rξ
ξ dr =

∞∑
n=1

∫ 1

0

(rξ)n−1

n
ξ dr =

∞∑
n=1

ξn

n2
.(A.3)

Similarly,

∫ 1

0

− log(1 − rξ)

rξ
ξ dr =

∞∑
n=1

ξ
n

n2
.(A.4)

Subtracting the last two expressions and recognizing that ξ = 1/ξ yields

∞∑
n=−∞, n �=0

ξn

n|n| =

∫ 1

0

− log(1 − rξ)

rξ
ξ dr −

∫ 1

0

− log(1 − rξ)

rξ
ξ dr.(A.5)

However, the right-hand side is just the integral
∫
− 1

ζ log(1 − ζ) dζ taken along

the radial path from ξ to ξ via the origin (see Figure A.1). Since the integrand
− 1

ζ log(1 − ζ) can be made holomorphic in the complex plane cut along the interval

[1,∞) on the real line, the curve along which the integral is taken can be deformed to
lie on the unit circle, with a small indentation at the branch point ζ = 1 (Figure A.1).
The indentation does not contribute to the integral along the deformed curve in the
limit where the radius of the indentation tends to zero. Setting ξ = exp(i2πX), the
integral may thus be expressed as

∞∑
n=−∞, n �=0

ξn

n|n| = −i2π

∫ X

−X

log [1 − exp(i2πX ′)] dX ′

= −i2π

∫ X

0

log [1 − exp(i2πX ′)] + log [1 − exp(−i2πX ′)] dX ′

= −i2π

∫ X

0

log
[
4 sin2(πX ′)

]
dX ′.(A.6)
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Consequently, the kernel K defined by (3.74) may be written as

K(X) =
1

4π

∫ X

0

log
[
4 sin2(πX ′)

]
dX ′ =

∞∑
n=−∞, n �=0

iξn

8π2n|n| .(A.7)

The argument above has shown that the series on the right converges pointwise to the
integral in the middle. By the Weierstrass M -test, it also converges uniformly; that
is, Kn0

(X) defined in (3.75) converges to K(X) in the C([0, B]) norm as n0 → ∞.
Lastly, it follows immediately that K(1) = 0, and (3.56) holds.

A.2. Differentiation under the integral sign. We can use the series repre-
sentation (A.7) of the kernel K to show that (A.1) holds. Specifically, let

μS̃n0(X) = −
∫ B

0

Kn0(X −X ′)S̃(X ′) dX ′ + 1,(A.8)

where Kn0 is defined in (3.75). It is easy to see that S̃n0 converges to S̃ in the C([0, B])
norm. Since K ′

n0
is continuous and hence bounded, we can further differentiate di-

rectly,

μS̃′
n0

(X) = −
∫ B

0

K ′
n0

(X −X ′)S̃(X ′) dX ′,(A.9)

and S̃n0 ∈ C1([0, B]). But K ′
n0

(X) = −
∑n0

n=−n0,n �=0 exp(i2πX)/(4πn) converges
to K ′(X) almost everywhere in [0, 1] by the results of section A.1. Moreover, be-
cause

∑∞
n=1 1/|n|2 < ∞, K ′

n0
(X) also converges as a Fourier series to K ′(X) in the

L2([0, 1])-norm, and hence in the L1([0, 1])-norm. Hence, for B ∈ [0, 1],

sup
x∈[0,B]

∣∣∣∣∣
∫ B

0

K ′
n0

(X −X ′)S̃(X ′) dX ′ −
∫ B

0

K ′(X −X ′)S̃(X ′) dX ′

∣∣∣∣∣
≤ sup

X∈[0,B]

|S̃(X)|
∫ 1

0

∣∣K ′
n0

(X ′) −K ′(X ′)
∣∣ dX ′ → 0(A.10)

as n0 → ∞. By the completeness of C1([0, B]), we therefore have

μS̃′(X) = μ
d

dX
lim

n0→∞
S̃n0(X) = −

∫ B

0

K ′(X −X ′)S̃(X ′) dX ′,(A.11)

which is (A.1).
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