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1 Asymptotically accurate description of stick-slip

cycle

1.1 The model

A simplified version of the model in the paper, ignoring longitudinal stresses and
coupling with the grounding line (i.e. L → ∞) and allowing only for a driving stress
τd, is

∂(Hτxy)

∂y
− τb = τd (1)

where τd, considered to be constant in y, may depend on time t. For simplicity, we
further restrict ourselves to a linear viscoelastic rheology, equivalent to putting n = 1
in Glen’s law:

∂τxy
∂t

+ ντxy = G
∂u

∂y
(2)

or

Tm
∂τxy
∂t

+ τxy = η
∂u

∂y
(3)
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where Tm = ν/G is known as the Maxwell time. We specify a velocity-weakening
plastic rheology with a time delay as

τb = τyldu/|u| if |u| > 0, (4a)

|τb| ≤ τyld if u = 0, (4b)

where

Tb
∂τyld
∂t

+ τyld = τs {1− β[1− exp(−|u|/u0)]} , (5)

where Tb is a friction adjustment timescale, τs is static friction while β = (τs−τk)/τs ∈
(0, 1) is the fractional drop from static to dynamic friction, and u0 is the velocity scale
over which the adjustment from static to dynamic friction occurs.

As a regularization of the above, we can also use

τb =
τcu√
ǫ2 + u2

instead of (4) with sufficiently small ǫ ≪ u0; this does not affect the asymptotic
results we develop below.

As boundary conditions, we impose zero velocity at the ice stream margins y = 0 and
W ,

u(0, t) = u(W, t) = 0.

Our analysis below describes the stick-slip cycle as a highly nonlinear, spatially ex-
tended oscillator.

1.2 Scaled model

Assume L, H and τ0 are given. We pick scales appropriate for viscous flow, and scale
time with the Maxwell time,

[y] = W/2, νH [u]/[y]2 = [τb] = τs, [t] = Tm. (6)

This yields the dimensionless parameters

α = Tm/Tb, γ = [u]/u0, (7)
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and we define dimensionless variables as

y = [y]y∗, t = [t]t∗ u = [u]u∗, τxy = ([τb][y]/H)τ ∗

τb = [τb]τ
∗

b , τyld = [τb]τ
∗

c , τd = −[τb]f
∗.

(note the symbol τd has been replaced by −f .)

For simplicity, we drop the asterisks immediately. In dimensionless form, the model
reads

∂τ

∂y
− τb + f = 0, (8a)

∂τ

∂t
+ τ =

∂u

∂y
, (8b)

τb = τcu/|u| if |u| > 0, (8c)

|τb| ≤ τc if u = 0, (8d)

∂τc
∂t

= α(1− β[1− exp(−γ|u|)]− τc), (8e)

u(0, t) = u(2, t) = 0. (8f)

We assume that the friction adjustment (or slip event) timescale Ts is fast compared
with the Maxwell time, so α ≫ 1, and that the dynamic friction velocity scale u0 is
not large, so γ is not small. To be precise, we assume that γ is strictly O(1), though
our results actually still apply for some large γ. We also assume that the driving
stress f may vary singificantly on timescales comparable with Tm but not on time
scales compared with the slip event time scale Tb, and also that f is constant across
the width of the ice stream. Lastly, we require that f > 1 at least for most of the
stick-slip cycle. As we will see later, f < 1 corresponds to a single slip event at most.

1.3 Stick-slip dynamics

Note that the drop in basal yield stress τc from static to dynamic friction in (8e) is
essential in generating stick-slip motion. With the friction and Maxwell time scales
well separated (α ≫ 1), this drop occurs over a short period of time, of length O(1/α)
in dimensionless terms. To capture the dynamics associated with this (and hence to
describe a slip event) requires a rescaling.
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1.3.1 Slip events

A fast time scale on which friction adjusts can be written as

T = α(t− tn),

where tn is the start of the nth slip event. On the fast timescale associated with T , the
viscoelastic rheology of ice will be dominated by its elastic component, represented
by ∂τ/∂t in (8b). In order for sufficiently large elastic stresses to be generated in (8b)
during a slip event to ensure force balance is maintained, we also require a rescaling
of velocity as

U = u/α. (9)

In other words, velocities can be expected to be much larger than their expected
‘viscous’ values during a slip event.

With this rescaling in hand, we get

∂τ

∂y
− τb + f = 0, (10a)

∂τ

∂T
+ α−1τ =

∂U

∂x
, (10b)

τb = τcU/|U | if |U | > 0, (10c)

|τb| ≤ τc if U = 0, (10d)

∂τc
∂T

= 1− β[1− exp(−γα|U |)]− τc, (10e)

U(0, T ) = U(2, T ) = 0. (10f)

Now we can make use of the fact that α ≫ 1 to simplify the above by dropping
terms of O(α−1). In addition, with γ & 1, we can also approximate exp(−γαU) ∼ 0
(except near the margins of the ice stream, where U → 0; however, as shown in §1.3.2,
this does not have a leading order effect on the flow of the bulk of the ice stream).
Then we have a purely elastic model with evolving dynamic friction. Assume U > 0
during the slip event. Then τb = τc. Owing to our assumption that f does not change
significantly on the slip time scale, we can treat f as independent of T . Differentiating
(10a) with respect to time and combining this with (10b) and (10e) gives

∂2U

∂y2
+ τc − 1 + β = 0 (11)
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subject to U(0, T ) = U(2, T ) = 0. In the meantime, (10e) gives

∂τc
∂T

+ τc = 1− β. (12)

This has solution
τc = (1− β) + [τc0 − (1− β)]e−T , (13)

where τc0(x) is the yield stress at position x at the beginning of the slip event. Basal
yield stress exponentially approaches its dynamic friction value of (1− β).

We will show shortly that the intial basal yield stress is simply its static friciton
value τc0 ≡ 1 and so does not depend on position, in which case (11) together with
U(0) = U(2) = 0 can be solved as

U =
[τc0 − (1− β)]e−T

2

(

2y − y2
)

. (14)

The velocity profile maintains the same shape but its amplitude decays exponentially
during the slip event, as the result of elastic stresses building up. These elastic stresses
can be computed at any point in time from (10a). Using the symmetry of the system
about y = 1, we expect from (10a) and (13) (with τc0 independent of y)

τ =
{

(1− β − fn) + [τc0 − (1− β)]e−T
}

(y − 1). (15)

Here, we use fn to denote f(tn), assuming that the driving stress may vary on the
outer time scale associated with the slow time variable t, but remains constant over
the slip event. Clearly, τ exponentially approaches the steady profile (1−β−fn)(y−1)
required to maintain force balance at dynamic friction.

1.3.2 Termination of the slip event

As velocity decays at the same time as elastic stresses build up, we expect the slip
eventually to stop altogether, so the basal yield stress τc can return to its static
friction value. This cannot be captured by the exponential decay in (14) and (13)
alone: this never leads to U actually reaching zero, and bed strength attaining static
friction values as we have assumed is the case during the stick phase. To describe the
termination of the slip event, we must instead account for the fact that, as velocity
U becomes small enough, the exponential term in (10e) can no longer be ignored.
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The full detail of the return of yield stress τc to its static value and the associated
termination of the slip event are beyond our ability to capture analytically in this
asymptotic solution. We show only how, increases in yield strength in the margins,
where velocities are low due to the imposed boundary conditions, can lead to signif-
icant departures in velocity from the profile computed in (14) at late stages in the
slip event. We expect that this initiates the termination of the slip event, and give
an estimate for the time at which this should occur.

The role of low velocities in the margins: the main phase of the slip event

One possiblity is that termination is initiated in the margins, where velocities are
small due to the boundary condition (10f) and the exponential term in (10e) remains
of O(1). During the main part of a slip event, this leads to a larger amount of friction
in a small boundary layer near the margin than is predicted in (13), but this only
causes a small correction to the velocity field in (14). Let Λ = γα ≫ 1. The solution
(14) predicts that the exponential term exp(−γα|U |) = exp(−Λ|U |) in (10e) is in fact
of O(1) within a distance ∼ 1/Λ of the margin, and therefore cannot be ignored in
that region. This suggests a rescaling close to the margin; for the margin at y = 0,
the relevant rescaling takes the form

Y = Λy, Ũ = ΛU, (16)

with an analogous theory possible to construct for the margin at y = 2. Under this
rescaling, the equivalent of (11) and (12) becomes

Λ
∂2Ũ

∂Y 2
= β exp(−|Ũ |)− τc + 1− β (17)

∂τc
∂T

= β exp(−|Ũ |)− τc + 1− β (18)

At leading order, the velocity field is unaffected by the velocity-dependent term on
the right-hand side: Writing Ũ = Ũ (0)+Λ−1Ũ (1)+O(Λ−2), the leading order solution
that matches the far-field solution (14) for the bulk of the ice stream is

Ũ (0) = (τc0 − 1 + β)e−TY. (19)

The velocity-dependent term simply gives a first order correction that satisfies

∂2Ũ (1)

∂X2
= β exp

[

(τc0 − 1 + β)e−TY
]

− τ (0)c + 1− β, (20a)

∂τ
(0)
c

∂T
= β exp

[

(τc0 − 1 + β)e−TY
]

− τ (0)c + 1− β. (20b)
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Although this defies a closed-form solution, it is clear that, during the main part of
the slip event, the effect of the velocity-dependent term is confined to a boundary
layer and remains small.

The role of low velocities in the margins: the late stages of the slip event

During the late stages of the slip event, as the velocity of the bulk of the ice stream
drops, the correction to velocity U due to the exponential terms (10e) is no longer
small compared with the velocity due to lateral shearing imposed by the bulk of the
ice stream. This happens when [τc0 − (1− β)]e−T ∼ Λ−1/2, so when

T ∼ 1

2
log(Λ) + log (τc0 − 1 + β) . (21)

At such late times, the boundary layer in which the velocity-dependent term in (10e)
is of O(1) has widened considerably, suggesting a further rescaling

Ỹ = Λ1/2y, (22a)

T̃ = T − 1

2
log(Λ)− log (τc0 − 1 + β) (22b)

We also use the fact that, at this late time, the lateral shear stress τ is close to the
profile required to maintain force balance with limiting dynamic friction as in (15):

τ = (1− β − fn)(y − 1) + Λ−1/2τ̃ . (23)

Applying this to (10) with f = fn and still omitting the O(α−1) viscous term in the
rheology, we have from (10) that

− ∂τ̃

∂Ỹ
− τb + 1− β = 0 (24a)

∂τ̃

∂T̃
= −∂Ũ

∂Ỹ
(24b)

τb = τcŨ/|Ũ | if |Ũ | > 0, (24c)

|τb| ≤ τc if Ũ = 0, (24d)

∂τc

∂T̃
= β exp(−|Ũ |) + 1− β − τc, (24e)

Matching with the main part of the slip event requires ‘initial’ conditions of the
form τc ∼ 1 − β as T̃ → −∞, while matching with the interior of the ice stream
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(which is still described by (10)) corresponds to τ̃ ∼ exp(−T̃ ) as Ỹ → ∞, and
so ∂Ũ/∂Ỹ = −∂τ̃/∂T̃ = exp(−T̃ ). The no-slip boundary condition at the margin
remains as Ũ(0, T̃ ) = 0.

It should be clear that (24) allows for velocities Ũ that can reach zero in the near-
margin boundary layer due to the nonlinear term in (24e), while this was not possible
during the earlier stages of the slip event, where the same term appears only at higher
order in (20a). We therefore expect termination to be initiated at times T ∼ log(Λ)/2,
although we are unable to state this with complete confidence.

While we cannot solve equations (24e) analytically, we can use the numerical model
developed in this study to investigate the veracity of the asymptotic results, specifi-
cally the scaling of velocity (9) and termination time (equation 21, which is log(γα)/α
in dimensional terms). We specify driving stress directly in the model, as in Section
5.3 of the main text. The parameters we use are: G=1010 Pa, ν=1011 Pa-hours,
W=100 km, H=1000 m, u0=250 m/a, τs=3 kPa, τk=2 kPa, and τd=-4 kPa. Tb, the
basal time constant, is varied, thus varying α = Tm/Tb. Tb is given the values 0.025,
0.05, 0.1, 0.2, 0.4 hours, and so α varies from 25 to 400.

FIg. 1 plots the ratios of maximum velocity and α. (Values are normalized, so
the first value is 1 by construction.) Tb is increasing from left to right, meaning α
is decreasing. ∆tterm, the time at which the slip event terminates, is not as clearly
defined as maximum velocity. We choose to define this time based on the curvature of
the velocity profile. Throughout most of the slip event, the profile is parabolic (and
convex). When the slip event terminates this breaks down and part of the profile
has positive second derivative, as seen from Fig. 5(a) of the main text. Thus we
define ∆tterm as the time (after the beginning of the event) at which uyy takes on its
maximum value (temporally and spatially). From inspection this metric agrees well
with the point at which the slip terminates. FIg. 1 also plots the ratio of this value
to log(γα)/α (normalized as well).

The scaling of ∆tterm seems to be accurate to within 10 %, subject to the assumption
that our metric for termination time is correct. The scaling of velocity is less accurate;
however, it is possible that at the larger values of α, the time step (.001 hours) was
not small enough to capture the peak velocity at the beginning of the slip event.
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Figure 1: Ratio of maximum velocity to α, and of measured termination time to
log(γα)/α. Values are normalized so that the leftmost value is 1.

1.3.3 The stick phase

The results above describe a single slip event starting at t = tn and lasting for a period
of time we estimate at ∼ log(γα)/α. The slip event is essentially described by (13)–
(15); the analysis in §1.3.2 is intended only to indicate how the exponential decay
in velocity described by (14) wcan eventually lead to complete shut down around
time T ∼ log(Λ)/2 = log(γα)/2. Assuming this to be the case, we can refine our
assumptions on γ: we simply have to suppose that log(γα)/α ≪ 1, so the complete
shutdown (which permits basal friction to return to its static value) happens on time
scales much faster than the Maxwell time. (23) then also shows that stress remains
at its dynamic friction limit during this final termination of the slip event.

During the subsequent ‘stick’ phase of the stick-slip cycle, we can once more apply
(8), but now with u = 0. In the limit α ≫ 1, we obtain a simple model for viscous
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relaxation of the built-up elastic stress,

∂τ

∂y
− τb + f = 0, (25a)

∂τ

∂t
+ τ = 0, (25b)

|τb| ≤ τc, (25c)

0 = 1− τc, (25d)

with initial condition given by (15),

lim
t→t+n

τ(x, t) = (1− β − f(tn))(y − 1). (26)

Stress now relaxes simply according to (25b), to give

τ(x, t) = (1− β − f(tn)) exp(−(t− tn))(y − 1). (27)

The basal shear stress required can be computed from (25a) throughout the stick
phase. As the built-up elastic stress decays, basal shear stress has to rise, and we get

τb = f(t)− (f(tn) + β − 1) exp(−(t− tn)) (28)

Meanwhile (25d) shows that the yield stress τc remains at its static value throughout
the stick phase, owing to the fast relaxation time scale for friction. This justifies the
statement above (14), that τc0 is simply the static friction value of 1. From here it
can be seen that, during the stick phase, the assumptions of the scaling for the stick
phase duration in the main text (section 4.2) hold, and the (nondimensional) stick
interval is given by

tn+1 − tn = log

(

f0 − (1− β)

f0 − 1

)

, (29)

where tn+1 is the time of the next slip event. Note that if β ≪ 1, that is, if static and
kinetic yield stresses are very close, then

tn+1 − tn ∼ β

f0 − 1
. (30)

Of large-scale interest is not the large values of velocity (∼ 1/α× the viscous velocity
scale) but the mean velocity averaged over a slip cycle, as this generates the ice flux
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that changes ice geometry over long time scales. This average is easy to compute: we
have

ū(y) =
1

tn+1 − tn

∫ tn+1

tn

u(y, t) dt,

where the integral has to include the slip event. In fact, the only non-zero contribution
comes from the slip event. At leading order, applying the rescalings in §1.3.1 and using
(14),

∫ tn+1

tn

u(y, t) dt =

∫

∞

0

U(y, T ) dT =

∫

∞

0

[τc0 − (1− β)]e−T

2

(

2y − y2
)

dT =
β(2y − y2)

2

because it was shown that we can use τc0 ≡ 1. Then

ū =
β(2y − y2)

2(tn+1 − tn)
. (31)

Fig. 2 compares this expression (with (29) for the interval length) with a velocity
profile averaged over one stick-slip cycle for a given value of β. All parameters are as
in Fig. 1, with Tb=0.1 hours, and values are dimensionalized. The profiles are almost
coincident with each other.

The most interesting result applies when β is small, so the recurrence interval is given
by (30). Then

ū ∼ (f0 − 1)(2y − y2)

2
, (32)

or in dimensional variables,

ū ∼ −(τd + τs)(Wy − y2)

2Hν
. (33)

This is in fact exactly the shearing profile one would obtain if there were no drop in
friction at all and the ice stream behaved purely viscously. All that the slip events
do in that case is to concentrate the flow into short time intervals, but they leave
the time-averaged flux completely unchanged. For larger β, the recurrence interval
tn+1− tn changes slower than linearly with β, as opposed to a nearly-elastic rheology,
where tn+1−tn should be linear in β. Hence the mean discharge is increased somewhat
above the purely viscous flow velocity in (33).
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Figure 2: Time-averaged velocity profiles u(y) for different values of β.

1.4 Discussion

A relatively complete asymptotic solution can be given in closed form, which echoes
many of the features of the analytical solution to the block slider model in the main
paper, though some of the details are different. In particular, we analyze here the
continuum model of the main paper, in which the duration of the slip event and details
of the velocity field during the event are controlled by a friction model in which the
yield stress of the bed asymptotically approaches dynamic friction over time, while
inertial effects are negligible.

To obtain a mostly analyical solution, we have made several simplifications. Primarily,
we omit the effect of upstream ice ‘pushing’ the stick-slip region from above, and we
have also restricted the analysis to ice of constant viscosity. The advantage of the
asymptotic solution is that, as with the block-slider model, various inferences can be
drawn for relatively general parameter choices.

Two observations stand out from our results: Firstly, in order to generate stick-slip
events it suffices to have a velocity-weakening friction law coupled with a viscoelastic
ice rheology. The stick-slip motion need not be tied to a tidal cycle, but can be
generated purely by the viscous relaxation of stresses in the ice, as explained in
the main text. The length of a stick-slip cycle under these ‘unforced’ conditions
is then proportional to the Maxwell time. The second observation is that, although
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instantaneous velocities during the slip event can be large , the time-averaged velocity
field remains similar to that computed from a purely viscous model in the absence
of velocity-weakening friction. In fact, in our model, slip velocities scale relative to
purely viscous velocities as the ratio of Maxwell time to bed adjustment 1/α = TM/Tb,
and can be made larger by choosing a shorter bed adjustment time scale. However,
longer-time ice dynamics (i.e., relevant to the evolution of ice thickness) will only
see the time-averaged velocity, and the occurence of stick-slip cycles may not signal
any significant change in the latter relative to purely viscous flow in the absence of
velocity-weakening friction. If true, this would imply that stick-slip events are of
minor consequence for the large-scale dynamics of ice sheets, unless the occurence
of velocity-weakening friction is a symptom of other, more fundamentally significant
changes at the ice stream bed.

2 Rate and state treatment of basal stress

The basal sliding law implemented in our model (main text, equations 9-10) is in-
tended as a phenomenological description of bed strength evolution, one in which
the functional form and the parameters are based on observed time and length scales
associated with slip events. It is not intended to arise from any specific glaciological
process. In non-glaciological contexts, however, studies of stick-slip have made use
of rate-and-state models of friction (e.g., Ruina, 1983; Segall and Rice, 1995; Rubin
and Ampuero, 2005). In these models of bed friction, frictional resistance depends
on both sliding velocity and a “state variable” (often called θ), which serves as a
macroscopic description of microscopic asperities at the sliding interface, and gives
friction some degree of “memory”. There are different types of rate-and-state laws,
particularly concerning the evolution of θ. Rubin and Ampuero (2005) identifies both
a “slip law” and an “aging law”, where the latter is so named because θ increases
when sliding is negligible, as opposed to the slip law.

In the following, the bed model from the main text (equations 9-10) is referred to
as the “phenomenological” model, to distinguish from rate-and-state models. It can
be argued that rate-and-state friction models are themselves phenomenological, aris-
ing from attempts to mathematically explain frictional behavior in lab experiments;
however, we reserve the term here to reflect our attempt to reproduce the behavior
observed from GPS measurements of Whillans Ice Plain.
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2.1 Connection between phenomenological stress model and

“Slip” rate and state

Though not intended as a rate-and-state formulation, it can be shown that our treat-
ment is very similar to the “slip” law as presented in Rubin and Ampuero (2005).
In particular, if the explicit velocity-dependence of stress is set to zero, then the two
laws are nearly equivalent, save for the fact that the slip timescale Tb is a constant in
our treatment, whereas in the rate-and-state law it is proportional to sliding velocity.
We demonstrate this below.

In rate and state formulations the equation for frictional strength τ can be written as

τ = σ

(

f ∗ + a ln
u

u0
+ b ln

u0θ

Dc

)

, (34)

where σ is normal stress, and f ∗, a and b are parameters. Dc is often cited as a
characteristic slip distance. The quantity θ, with a “slip” law, evolves according to

θ̇ = −uθ

Dc

ln

(

uθ

Dc

)

. (35)

If b > a, the friction law is rate-weakening. We assume that a = 0; this is equivalent
to saying that friction does not depend on velocity; this is true of a plastic friction
law. In this case, for a given u, we can find a steady-state θ:

θss =
Dc

u
, (36)

i.e. a value of θ for which θ̇ is zero. This then gives a “steady-state” friction τss which
depends only on u:

τss(u) = σ

(

f ∗ − b ln
u

u0

)

; τ − τss(u) = σb ln
uθ

Dc

. (37)

If we differentiate (34) by t, we get

τ̇ = σb
θ̇

θ
= −σb

u

Dc
ln

(

uθ

Dc

)

= − u

Dc
(τ − τss(u)). (38)

This is very similar to our phenomenological bed strength model, with yield stress
playing the role of τ . The negative log behavior of τss(u) differs from the exponen-
tial decay of our phenomenological model, but qualitatively the dependence on u is
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similar. An important difference, however, is that in the phenomenological model
(τ − τss(u)) is divided by a characteristic slip timescale Tb. The fraction u/Dc multi-
plier can be seen as in inverse timescale, but one which varies with velocity u. This
may have an impact on the dynamics of stick-slip, but otherwise the bed stress models
are very similar.

2.2 Implementation of “aging” rate and state in the model

The above discussion shows how our phenomenological basal treatment is very similar
to a rate-and-state “slip” law. In these types of models, bed strength does not increase
when sliding velocity is close to zero. However, another type of rate-and-state for-
mulation, an “aging” type (Rubin and Ampuero, 2005), allows for slow strengthening
during stagnancy. In this bed model, (35) is replaced by

θ̇ = 1−
(

uθ

Dc

)

. (39)

Implementation of the rate-and-state model in our numerical model is very straight-
forward. τ εb , which appears in equation (A3) of the main text, is replaced by τ from
(34) and θ is evolved according to (39). Since we do not consider fluctuations in
normal stress, (34) is rewritten

τ = F̂ + Â ln
u

u0

+ B̂ ln
u0θ

Dc

. (40)

We do not know of any previous published studies of stick-slip of an ice stream
with rate-and-state friction, and again have little else to constrain the parameters
(F̂ , Â, B̂, u0, and Dc) other than scales of observed behavior. An advantage of the
rate-and-state formulation is that we do not need to include an inertial damping term,
as discussed in the Appendix of the main text, as basal stress is no longer decoupled
from velocity during the slip event.

Fig. 3(a) shows umax over time where aging rate-state friction has been implemented.
Aside from bed friction parameters, the model parameters are the same as in the
simulation of Fig. 3(a) of the main text, i.e. it is a stress-driven simulation, not a
push-driven one. The parameters of the rate-state formulation are as follows: Â =
3 kPa, B̂ = 75 Pa, F̂ = 2 kPa, u0 = 10 m/a, and Dc = 0.2 mm. As stated above,
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the parameters were in part chosen based on knowledge of general scales (i.e. bed
strength ∼ 1 kPa, u0 is on the order of the velocity in “stick” phase). Dc was then
chosen such that the observed slip timescale was 10-30 minutes.

A similar pattern of behavior is seen to stick-slip with the phenomenological bed
model. Certain other properties hold as well, at least in a qualitative sense. Varying
Dc within a narrow range can change the details of a slip event dramatically, as seen in
Fig. 3(c). Still, the time-averaged velocity changes relatively little (Fig. 3(b)). Note
that the average velocity is larger than that of the phenomenological model (main
text, Fig. 5(b)); this is simply because the sliding parameterization is fundamentlally
different. Also, it is difficult to isolate the slip timescale and control it (as opposed to
the phenomenological model, in which Tb can be modified directly). Still, these results
suggest that the notion of the average velocity being insensitive to some aspects of
the slip phase might not be limited to the phenomenological bed model. A further
comparison between the aging rate-state bed model and the phenomenological model
is made by observing how tides modify the frequency spectrum, and how they affect
time-averaged velocity, as was done for the phenomenological model in the main text.
The experiments with the rate-state model are shown in Fig.4.

Fig. 4(a) shows the effects on the frequency spectrum. As in the above experiments,
the parameters differ from those in Fig. 10 of the main text only in the basal stress
formulation. The rate-state parameters are as above. As with the phenomenological
model, there is a pattern of regularly-spaced peaks for the non-tidally forced case,
indicating an unforced frequency of ∼4.6 hours. In contrast to the phenomenological
model, though, the peaks are less uniform and slightly wider at higher frequencies, and
there is some irregular noise at higher harmonics, although it is minimal. A small
forcing (ηtide = 0.1m) with period 12h, makes the spectrum becomes quite noisy
at frequencies of less than ∼ 40 minutes. Still, the first few peaks remain intact,
indicating a still-strong presence of the unforced frequency. The forcing frequency is
not detectable. With a strong forcing, the forcing frequency can be seen, although it
is weak. The first peak of the unforced spectrum remains, indicating the persistence
of the 4.6-hour cycle, although the spectrum is noticeably different from the unforced
spectrum, even at lower harmonics.

Fig. 4(b) shows results from the experiment shown in Fig. 11 from the main text,
with aging rate-state instead of the phenomenological model. Results are shown for
the stress-driven model only. As can be seen, the time-averaged velocities are not
affected by the presence of tides, even though tidal forcing modifies the frequency
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Figure 3: (a) Slip events with aging rate-state law. Parameters are as in Fig. 3(a)
of the main text, with the exception of bed parameters, which are given above. (b)
Time-averaged velocity profiles for two different values of characteristic slip distance
Dc; other parameters are as in (a). (c) Individual slip events with differing values of
Dc.
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Figure 4: (a) Spectra of umax with different levels of tidal forcing, as in Fig. 10 of
the main text but with aging rate-and-state friction. (b) Time-averaged (centerline)
velocities as in Fig. 11 of the main text (red→tidally forced). Only stress-driven
results are shown.

spectrum greatly.

The result that average velocities are unchanged is suprising, even more so than in the
phenomenological bed model case. This is because in the phenomenological model,
the “strong” and “weak” bed states are fixed, and therefore slip distances are fixed
for a given simulation. This is not the case for an aging rate-state friction model, as
tidal forcing leads to variable-length stick intervals, and the “aging” component of
the rate-state formulation leads to variations in the strong state of the bed. Owing
to the log-dependence of the friction on the θ, however, this effect may be very weak.
In any event, the result in the main text is recovered using an alternative friction
formulation. These experiments demonstrate that the results of the main text are
reproduced qualitatively using a different model for bed friction. This does not mean
that the results are unequivocally correct; but given the uncertainty regarding the
mechanism of rate-weakening of the ice-bed interface on Whillans Ice Plain, it is
important to demonstrate that the results of the study do not depend strongly on a
somewhat arbitrary choice of the representation of interface physics. The purpose of
these experiments is to show that this is not the case.
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