EOSC 250 - Geophysical Fields and Fluxes Mathematical background homework

due Wednesday, January 15th, 2024.
Compute $\mathrm{d} f / \mathrm{d} x$ for the following functions (where a, b, k and n are constants):

1. $f(x)=(a x+b)^{n}$
2. $f(x)=x^{n} \cos (x)$
3. $f(x)=\sin (x) \cos (x)$
4. $f(x)=\exp \left(-\frac{(a x+b)^{2}}{2}\right)$
5. $f(x)=x^{2} \log (x)-x^{2} / 2$
6. $f(x)=x \exp (k x)$
7. $f(x)=[\exp (k x)]^{n}$

Note: \log here (and anywhere in this course) is \log with base $e=2.71 \ldots$
Compute the following indefinite integrals (where a, b, k and n are constants):

1. $\int x(a x+b)^{n} \mathrm{~d} x$
2. $\int x \sin (x) \mathrm{d} x$
3. $\int \cos (a x+b) \mathrm{d} x$
4. $\int \frac{1}{a+x} \mathrm{~d} x$
5. $\int \cos ^{n}(x) \sin (x) \mathrm{d} x$
6. $\int x \cos (x)+\sin (x) \mathrm{d} x$
7. $\int x \exp \left(-x^{2}\right) \mathrm{d} x$
8. $\int-\log [\cos (x)] \times \sin (x) \mathrm{d} x$

Compute the following definite integrals (where a, b, n and k are constants):

1. $\int_{0}^{1} \exp (x) \mathrm{d} x$
2. $\int_{0}^{1} \cos (\pi x) \mathrm{d} x$
3. $\int_{a}^{b}-\cos ^{n}(k x) \sin (k x) \mathrm{d} x$
4. $\int_{a}^{b} \sin ^{2}(x) \mathrm{d} x$

Compute the first four terms in the Taylor series about $x=0$ for the following functions

1. $f(x)=1 /(1-x)$
2. $f(x)=\log (1-x)$

Given $\mathbf{a}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \mathbf{b}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$, compute the following expressions

1. $|\mathbf{a}|$
2. $|\mathbf{a}+\mathbf{b}|$
3. $\mathbf{a} \cdot \mathbf{b}$
4. $\mathbf{a} \times \mathbf{b}$
5. The component of \mathbf{a} in the direction of \mathbf{b}

Solve the following linear system of equations

$$
\begin{array}{r}
x+2 y+4 z=0 \\
2 x+3 y+5 z=1 \\
x-y+2 z=1
\end{array}
$$

Solve the following quadratic equations

1. $3 x^{2}+3 x-5=1$.
2. $x^{2}+3 x-10=0$.
