
Final: EOSC 250

19 April, 2016

This exam consists of four questions worth ten marks each. Questions 2–4 have
optional parts worth an additional bonus point each. Available marks for each part of
a question are indicated in brackets; these are a guide to the level of detail expected.
Attempt THREE questions. READ THE QUESTIONS CAREFULLY. You
have 2 hours and forty-five minutes.
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1. (Vector calculus) Let S be the triangle with corners (1, 0, 0), (0, 1, 0) and (0, 0, 1),
with n̂ being the upward-pointing unit normal to S. Let C be the boundary curve
to S, traversed in an anticlockwise direction when viewed from above. That is,
C consists of the three line segments connecting the vertices of the triangle. Let

v = xyi + yzj + zxk.

(a) (1 point) Sketch S and C, indicating the orientation of n̂ and (with an
arrow) the direction in which C is traversed.

(b) (2 points) Compute ∇× v. Use the equation sheet if necessary.

(c) (4 points) Compute
∫
S
(∇× v) · n̂ dS

(d) (3 points) Compute
∫
C
v · dr, and verify that Stokes’ theorem holds. (Inte-

grate along each line segment separately to do this integral.)
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2. (Vector calculus and Poisson’s equation) Consider an infinitely long cylinder cen-
tred on the z-axis, containing electical charge with uniform charge density ρ0.
The electrical potential φ due to this cylinder satisfies

−ε0∇2φ = ρ0.

Let
r(x, y, z) = xi + yj, r(x, y, z) =

√
x2 + y2 = |r(x, y, z)|.

so r is distance of the point (x, y, z) from the symmetry axis of the cylinder.
Recall the product and chain rules for divergences and gradients,

∇f(g(x, y, z)) =
df

dg
∇g, ∇(fg) = g∇f+f∇g, ∇·(fv) = f∇·v+v ·∇f.

Assume that the symmetry of the cylinder means that φ can be written as φ =
φ(r).

(a) (2 points) Show that

∇r =
r

r

(b) (1 point) Show that
∇ · r = 2

(c) (1 point) Show that

∇φ =
dφ

dr

r

r

(d) (3 points) Show that

∇2φ = ∇ · (∇φ) =
d2φ

dr2
+

1

r

dφ

dr
=

1

r

d

dr

(
r

dφ

dr

)
.

(e) (3 points) Find a general solution to Poisson’s equation

−ε0
1

r

d

dr

(
r

dφ

dr

)
= ρ0

containing two constants of integration. Do not attempt to impose any
boundary conditions.

(f) (1 point) BONUS: If a point charge gives rise to an ‘inverse square law’
electrical field (meaning |E| is proportional to one over the square of dis-
tance from the point source), how does the electrical field strength vary with
distance from a line of electrical charge?
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3. (Conservation laws and the heat equation) Consider a sphere of radius R. Let
the heat production rate density in the sphere be a, where a is constant. At the
surface of the sphere, heat is received from space through incoming radiation at
a fixed rate of q0 per unit surface area. Treat q0 as a constant, with dimensions of
energy over time and area. Heat is also lost into space through radiation from the
surface. Per unit surface area, the rate of heat loss is σT 4

s , where Ts is the surface
temperature, and σ is a constant known as the Stefan-Boltzmann constant. Treat
Ts as having the same value everywhere on the surface of the sphere.

(a) (2 points) Assume the sphere is in a steady state. Without solving any
differential equations, use a simple energy balance argument and algebra /
geometry to compute the surface temperature of the sphere in terms of a,
q0, σ and R. Show that

Ts =

(
q0 + aR/3

σ

)1/4

.

(b) (8 points) Assume that the the temperature field in the sphere T (r) depends
only on the distance r of a point from the centre of the sphere, and that heat
transport occurs purely be conduction. T (r) satisfies

− 1

r2
d

dr

(
r2k

dT

dr

)
= a

with boundary condition

−kdT

dr
= σT 4 − q0 at r = R.

Solve for T (r), being careful in how you derive the constants of integration.
Clearly state any further assumptions you make. Show that your solution
at T (R) equals Ts computed in part a.

(c) (1 point) BONUS: For a planet, q0 is usually not constant over the surface
of the planet. A constant q0 would imply for instance incoming sunlight
everywhere falling vertically on the planetary surface. This is not the case:
for the Earth, less light is received per unit area of surface near the poles
because sunlight does not reach the surface vertically. Assume instead that
parallel rays of light reach the planetary surface from one side, and that
these rays of light carry energy at a rate qs per unit area perpendicular to
the rays. Again using basic geometry and algebra, show why

σT 4
s =

aR

3
+
qs
4
.

Page 4



4. (Differential equations) This question is about modelling population size. Let
n(t) be the number of living individuals in a population at time t (which could
be bacteria in a petri dish or humans in a society). Assume that in a given time
interval δt, a constant fraction λδt of individuals that are alive will reproduce
successfully. Assume also that the fraction of individuals that will die in a given
time interval δt increases with population size: individuals are more likely to die
in a crowded population, where competition for resources becomes more intense.
Assume that the fraction of initially living individuals that die in the interval is
µn(t)δt.

(a) (2 points) Explain carefully why

δn = (λn− µn2)δt.

Be sure to explain why it is not true that

δn = (λ− µn)δt.

Why does δt have to be small? Be succinct and precise.

(b) (1 point) The rate of change in the population size is therefore

dn

dt
= λn− µn2. (1)

What are the possible steady states for the population? Assume λ and µ are
constants.

(c) (1 point) As a preliminary step in solving equation (1), demonstrate the
identity

1

n(a− n)
=

1

a

(
1

n
+

1

a− n

)
.

You can either show that the expression on the right equals the expression
on the left, or vice versa.

(d) (6 points) Solve (1) for n(t), assuming that n(0) = n0 is given.

(e) (1 point) BONUS: One of the steady states you have identified in part b is
‘unstable’. Which one, and (physically) why?
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EOSC 250 - Geophysical Fields and Fluxes

Equation Summary

A = πr2

A = 2πrh

A = 4πr2

A =
1

2
× base× height

V = πr2h

V =
4

3
πr3

V =
1

3
× base× height

M =

∫
V

ρ dV

E =

∫
V

e dV

n̂ = ±
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(

∂h
∂y

)2
dS =

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

dx dy∫
q · n̂ dS =

∫ ∫
qz − qx

∂h

∂x
− qy

∂h

∂y
dy dx

d

dt

∫
V

ρ dV = −
∫
S

ρv · n̂ dS

d

dt

∫
V

e dV = −
∫
S

ev · n̂ dS −
∫
S

qc · n̂ dS +

∫
V

a dV

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

, q = qxi + qyj + qzk∫
S

q · n̂ dS =

∫
V

∇ · q dV

∂ρ

∂t
+∇ · (ρv) = 0
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∂e

∂t
+∇ · (ev) +∇ · qc = a

qc = −k∇T, e = ρcT

∇T = i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

ρc
∂T

∂t
+ ρcv · ∇T −∇ · (k∇T ) = a

−∇ · (k∇T ) = a

∇ · ∇T = ∇2T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

−k∇2T = a

− d

dx

(
k

dT

dx

)
= a(x),

−1

r

d

dr

(
rk

dT

dr

)
= a(r)

− 1

r2
d

dr

(
r2k

dT

dr

)
= a(r)

dq

dx
= a(x) q(x) = −kdT

dx

1

r

d(rq)

dr
= a(r), q(r) = −kdT

dr

1

r2
d(r2q)

dr
= a(r) q(r) = −kdT

dr

r = xi + yj + zk, r = |r| =
√
x2 + y2 + z2, r̂ =

r

r
.

∇T (r) =
dT

dr
r̂

∇ · [q(r)r̂] =
1

r2
d

dr

[
r2q(r)

]
.

q(r) =
Q0

4πr2
r̂.

T (r) =
Q0

4πkr

q(r) =
Q0

4π|r− r0|2
r− r0
|r− r0|

T (r) = T∞ +
Q0

4πk|r− r0|
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q(r) =
∑
i

Qi

4π|r− ri|2
(r− ri)

|r− ri|

T (r) = T∞ +
∑
i

Qi

4πk|r− ri|∫
C

f · dr =

∫ t2

t1

[
fx(x(t), y(t), z(t))

dx

dt
+ fy(x(t), y(t), z(t))

dy

dt
+ fz(x(t), y(t), z(t))

dz

dt

]
dt

∇× f =

(
∂fz
∂y

+
∂fy
∂z

)
i +

(
∂fx
∂z
− ∂fz
∂x

)
j +

(
∂fy
∂x
− ∂fx

∂y

)
k

∇× f =

∣∣∣∣∣∣
j j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∫
S

(∇× f) · n̂ dS =

∫
C

f · dr

φ = −
∫
C

f · dr

φ(rB)− φ(rA) =

∫
C

∇φ · dr

f = −∇φ

f = −Gm
r2

r̂

φ = −Gm
r

∇2φ = 4πGρ, g = −∇φ

−ε∇2φ = ρc, E = −∇φ

∇(fg) = (∇f)g + f(∇g)

∇f(g) =
df

dg
∇g

∇ · (φf) = φ∇ · f + f · ∇φ

∇× (φf) = (∇φ)× f + φ∇× f

∇×∇φ = 0

∇ · (∇× f) = 0
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