
Final: EOSC 250

19 April, 2016

This exam consists of four questions worth ten marks each. Questions 2–4 have
optional parts worth an additional bonus point each. Available marks for each part of
a question are indicated in brackets; these are a guide to the level of detail expected.
Attempt THREE questions. READ THE QUESTIONS CAREFULLY. You
have 2 hours and forty-five minutes.
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1. (Vector calculus) Let S be the triangle with corners (1, 0, 0), (0, 1, 0) and (0, 0, 1),
with n̂ being the upward-pointing unit normal to S. Let C be the boundary curve
to S, traversed in an anticlockwise direction when viewed from above. That is,
C consists of the three line segments connecting the vertices of the triangle. Let

v = xyi + yzj + zxk.

(a) (1 point) Sketch S and C, indicating the orientation of n̂ and (with an
arrow) the direction in which C is traversed.

(b) (2 points) Compute ∇× v. Use the equation sheet if necessary.

∇× v = −yi− zj− xk
(c) (4 points) Compute

∫
S
(∇× v) · n̂ dS

ANS: The surface is at z = h(x, y) = 1−x− y, with bounds in the xy-plane
of 0 < x < 1, 0 < y < 1−x. We have, with an upward-pointing unit normal,

n̂ dS =

(
k− ∂h

∂x
i− ∂h

∂y
j

)
dy dx = (i + j + k) dy dx

and so, with z = 1− x− y,∫
S

(∇× v) · n̂ dS =

∫ 1

0

∫ 1−x

0

(−yi− (1− x− y)j− xk) · (i + j + k) dy dx

=

∫ 1

0

∫ 1−x

0

−(x+ y + 1− x− y) dy dx

= −
∫ 1

0

∫ 1−x

0

1 dy dx

= −1

2

(d) (3 points) Compute
∫
C
v · dr, and verify that Stokes’ theorem holds. (Inte-

grate along each line segment separately to do this integral.)
ANS: Split the curve C into three parts C1, C2 and C3, going clockwise
around S. The first is from (1, 0, 0) to (0, 1, 0), with (x, y, z) = (x, 0, 1−x) =
r(x) and x going from 0 to 1. On the curve, v = xyi+yzj+zxk = x(1−x)k
so that ∫

C1

v · dr =

∫ 1

0

x(1− x)k · (i− k) dx

=

∫ 1

0

−x(1− x) dx

=
1

3
− 1

2

= −1

6
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The integrals along the other sides turn out to be −1/6 as well, something
you might intuit from symmetry. Specifically, C2 can be written as (x, y, z) =
(1− y, y, 0) = r(y) with y going from 0 to 1, and v = (1− y)yi so∫

C1

v · dr =

∫ 1

0

y(1− y)i · (−i + j) dy

=

∫ 1

0

−y(1− y) dy

= −1

6

and the computation for C3 can be done in the same way. Hence∫
C

v · dr = −1

6
− 1

6
− 1

6
= −1

2
=

∫
S

(∇× v) · n̂ dS

and Stokes’ theorem holds.

Page 3



2. (Vector calculus and Poisson’s equation) Consider an infinitely long cylinder cen-
tred on the z-axis, containing electical charge with uniform charge density ρ0.
The electrical potential φ due to this cylinder satisfies

−ε0∇2φ = ρ0.

Let
r(x, y, z) = xi + yj, r(x, y, z) =

√
x2 + y2 = |r(x, y, z)|.

so r is distance of the point (x, y, z) from the symmetry axis of the cylinder.
Recall the product and chain rules for divergences and gradients,

∇f(g(x, y, z)) =
df

dg
∇g, ∇(fg) = g∇f+f∇g, ∇·(fv) = f∇·v+v ·∇f.

Assume that the symmetry of the cylinder means that φ can be written as φ =
φ(r).

(a) (2 points) Show that

∇r =
r

r

ANS: Do this by direct differentiation

∇r =
∂
√
x2 + y2

∂x
i +

∂
√
x2 + y2

∂y
j +

∂
√
x2 + y2

∂z
k (1)

=
x√

x2 + y2
i +

y√
x2 + y2

j (2)

=
r

r
(3)

(b) (1 point) Show that
∇ · r = 2

ANS: Again, direct differentiation

∇ · r = ∇ · (xi + yj) =
∂x

∂x
+
∂y

∂y
= 2.

(c) (1 point) Show that

∇φ =
dφ

dr

r

r

ANS: Use the chain rule and the result for ∇r above

∇φ(r(x, y, z)) =
dφ

dr
∇r =

dφ

dr

r

r
.
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(d) (3 points) Show that

∇2φ = ∇ · (∇φ) =
d2φ

dr2
+

1

r

dφ

dr
=

1

r

d

dr

(
r

dφ

dr

)
.

ANS: Use the result for ∇φ above and then use the product and chain rules

∇ · (∇φ) = ∇ ·
[(

1

r

dφ

dr

)
r

]
= ∇

(
1

r

dφ

dr

)
· r +

1

r

dφ

dr
∇ · r

=
d

dr

(
1

r

dφ

dr

)
r

r
· r +

1

r

dφ

dr
× 2

=

(
− 1

r2
dφ

dr
+

1

r

d2φ

dr2

)
|r|2

r
+

2

r

dφ

dr

=

(
− 1

r2
dφ

dr
+

1

r

d2φ

dr2

)
r +

2

r

dφ

dr

=
1

r

dφ

dr
+

d2φ

dr2

=
1

r

d

dr

(
r

dφ

dr

)
where the last step uses the ordinary product rule in reverse

(e) (3 points) Find a general solution to Poisson’s equation

−ε0
1

r

d

dr

(
r

dφ

dr

)
= ρ0

containing two constants of integration. Do not attempt to impose any
boundary conditions.
ANS: Separate variables

d

dr

(
r

dφ

dr

)
= −ρ0

ε0
r

Integrate

r
dφ

dr
= − ρ0

2ε0
r2 + C1

Separate variables again

dφ

dr
= − ρ0

2ε0
r +

C1

r

Integrate again

φ(r) = − ρ0
4ε0

r2 + C1 log(r) + C2.
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(f) (1 point) BONUS: If a point charge gives rise to an ‘inverse square law’ elec-
trical field (meaning |E| is proportional to one over the square of distance
from the point source), how does the electrical field strength vary with dis-
tance from a line of electrical charge?
ANS: The line source is what must gives rise to the singular term again (as
in the same problem for a sphere). In the present case, we have

|E| =
∣∣∣∣dφdr

∣∣∣∣
behaving as C1/r near the axis of symmetry, so the electrical field is propor-
tional to 1/r (rather than 1/r2 for a point charge).
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3. (Conservation laws and the heat equation) Consider a sphere of radius R. Let
the heat production rate density in the sphere be a, where a is constant. At the
surface of the sphere, heat is received from space through incoming radiation at
a fixed rate of q0 per unit surface area. Treat q0 as a constant, with dimensions of
energy over time and area. Heat is also lost into space through radiation from the
surface. Per unit surface area, the rate of heat loss is σT 4

s , where Ts is the surface
temperature, and σ is a constant known as the Stefan-Boltzmann constant. Treat
Ts as having the same value everywhere on the surface of the sphere.

(a) (2 points) Assume the sphere is in a steady state. Without solving any
differential equations, use a simple energy balance argument and algebra /
geometry to compute the surface temperature of the sphere in terms of a,
q0, σ and R. Show that

Ts =

(
q0 + aR/3

σ

)1/4

.

ANS: The total heat produced in the sphere is volume ×a = (4πR3/3)a,
while the total amount of heat absorbed is surface area ×q0 = 4πR2q0,
and the total amount of heat radiated into space is surface area ×σT 4

s =
4πR2σT 4

s . Assuming they balance, we have

(4πR3/3)a+ 4πR2q0 = 4πR2σT 4
s

Rearranging gives the required result.

(b) (8 points) Assume that the the temperature field in the sphere T (r) depends
only on the distance r of a point from the centre of the sphere, and that heat
transport occurs purely be conduction. T (r) satisfies

− 1

r2
d

dr

(
r2k

dT

dr

)
= a

with boundary condition

−kdT

dr
= σT 4 − q0 at r = R. (4)

Solve for T (r), being careful in how you derive the constants of integration.
Clearly state any further assumptions you make. Show that your solution
at T (R) equals Ts computed in part a.
ANS: Separate variables

d

dr

(
r2k

dT

dr

)
= ar2
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Integrate

−r2kdT

dr
=
ar3

3
+ C1

Separate variables

−kdT

dr
=
ar

3
+
C1

r2

Integrate again

−kT =
ar2

6
− C1

r
+ C2,

so that

T (r) = −ar
2

6k
+
C1

kr
− C2

k
.

Assume the heat flux −k dT/ dr is bounded at the origin, so there is no point
heat source. This is only possible if C1 = 0. At the surface T = R, we have

−kdT

dr
=
aR

3
= σ

(
−aR

2

6k
− C2

k

)4

− q0

Solve for −C2/k. First, rearrange to give(
aR + 3q0

3σ

)1/4

= −aR
2

6k
− C2

k
= T (R)

which gives T (R) = Ts as required. Then

−C2

k
=

(
aR + 3q0

3σ

)1/4
aR2

6k

and so

T (r) =
a(R2 − r2)

6k
+

(
aR + 3q0

3σ

)1/4

=
a(R2 − r2)

6k
+ Ts.

(Note that you wouldn’t get full marks for simply abandoning the boundary
condition and imposing Ts at the surface; you are supposed to show that (4)
indeed gives the same solution for temperature at the surface as a simple
energy balance calculation would demand.)

(c) (1 point) BONUS: For a planet, q0 is usually not constant over the surface
of the planet. A constant q0 would imply for instance incoming sunlight
everywhere falling vertically on the planetary surface. This is not the case:
for the Earth, less light is received per unit area of surface near the poles
because sunlight does not reach the surface vertically. Assume instead that
parallel rays of light reach the planetary surface from one side, and that
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these rays of light carry energy at a rate qs per unit area perpendicular to
the rays. Again using basic geometry and algebra, show why

σT 4
s =

aR

3
+
qs
4
.

ANS: Incoming rays of light are parallel, and are effectively intercepted by a
‘disk’ equivalent to a cross-section of the planet placed at right angles to the
rays of light. The area of that disk is πR2, so the amount of heat absorbed
is πR2qs. Substituting that in the calculation in part a gives

4

3
πR3a+ πR2qs = 4πR2σT 4

s

and the required solution follows
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4. (Differential equations) This question is about modelling population size. Let
n(t) be the number of living individuals in a population at time t (which could
be bacteria in a petri dish or humans in a society). Assume that in a given time
interval δt, a constant fraction λδt of individuals that are alive will reproduce
successfully. Assume also that the fraction of individuals that will die in a given
time interval δt increases with population size: individuals are more likely to die
in a crowded population, where competition for resources becomes more intense.
Assume that the fraction of initially living individuals that die in the interval is
µn(t)δt.

(a) (2 points) Explain carefully why

δn = (λn− µn2)δt.

Be sure to explain why it is not true that

δn = (λ− µn)δt.

Why does δt have to be small? Be succinct and precise.
In a short interval δt, the number of individuals born is equal to the fraction
of individuals that reproduce times the number of individuals at the start
of the interval, so λδt × n. (In particular, the number of births is not λδt:
the birth rate scales with the size of the population and is not simply a
constant!) Similarly, the number of individuals that die is equal to the
fraction of individuals that die times the number of individuals at the start
of the interval, so µnδt × n. Both calculations only make sense because we
can treat n as constant over the interval, so δt must be small. The increase
in population size is the number of births minus the number of deaths, so

δn = λnδt− µn2δt,

which is the required result.

(b) (1 point) The rate of change in the population size is therefore

dn

dt
= λn− µn2. (5)

What are the possible steady states for the population? Assume λ and µ are
constants.
ANS: Steady states are defined by dn/ dt = 0, so n = 0 or n = λ/µ.

(c) (1 point) As a preliminary step in solving equation (5), demonstrate the
identity

1

n(a− n)
=

1

a

(
1

n
+

1

a− n

)
.
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You can either show that the expression on the right equals the expression
on the left, or vice versa.
ANS: Right-to-left is by far the easiest:

1

a

(
1

n
+

1

a− n

)
=

1

a

(
a− n

n(a− n)
+

n

n(a− n)

)
=

1

a

a− n+ n

n(a− n)

=
1

n(a− n)
.

(d) (6 points) Solve (5) for n(t), assuming that n(0) = n0 is given.
Use separation of variables:

dn

dt
= λn− µn2 = µn

(
λ

µ
− n

)
so

1

n[(λ/µ)− n]

dn

dt
= µ

Integrate both sides with respect to t∫
1

n[(λ/µ)− n]
dn = µt+ C

Use the result from the previous part∫
1

n[(λ/µ)− n]
dn =

1

λ/µ

∫
1

n
+

(λ/µ)− n
d

n

=
µ

λ

[
log(n)− log

(
λ

µ
− n

)]
= µt+ C

Rearrange

log

(
n

(λ/mu)− n

)
= λt+ C ′

or

n[1 +K exp(λt)] =
λ

µ
K exp(λt)

where K = exp(C ′) = exp(λC/mu). At t = 0, n = n0 so

n0(1 +K) =
λ

µ
K,
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and
K =

µn0

λ− µn0

Hence

n(t) =
λn0 exp(λt)

λ+ µn0 [exp(λt)− 1]
=

λn0

(λ− µn0) exp(−λt) + µn0

(e) (1 point) BONUS: One of the steady states you have identified in part b is
‘unstable’. Which one, and (physically) why?
An ‘unstable’ equilibrium is one from which the solution moves away over
time if you start close to it. Looking at the solution above, it is clear that
as t→∞, the solution will evolve towards

lim
t→∞

λn0

µn0

=
λ

µ
.

unless n0 = 0 The equilibrium n = λ/µ is clearly stable. The other equi-
librium at n = 0 is clearly not stable: the solution moves away from it.
Physically, this happens because a small population, so long as it is not zero
in size, will have births in it but virtually no deaths (as the fraction of in-
dividuals that die per unit time is proportional to the population size, so
almost zero when n is close to zero). Populations tend to grow exponentially
when there are no resource restrictions on them. (Sound familiar?)
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EOSC 250 - Geophysical Fields and Fluxes

Equation Summary

A = πr2

A = 2πrh

A = 4πr2

A =
1

2
× base× height

V = πr2h

V =
4

3
πr3

V =
1

3
× base× height

M =

∫
V

ρ dV

E =

∫
V

e dV

n̂ = ±
k− ∂h

∂x
i− ∂h

∂y
j√

1 +
(
∂h
∂x

)2
+
(

∂h
∂y

)2
dS =

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

dx dy∫
q · n̂ dS =

∫ ∫
qz − qx

∂h

∂x
− qy

∂h

∂y
dy dx

d

dt

∫
V

ρ dV = −
∫
S

ρv · n̂ dS

d

dt

∫
V

e dV = −
∫
S

ev · n̂ dS −
∫
S

qc · n̂ dS +

∫
V

a dV

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

, q = qxi + qyj + qzk∫
S

q · n̂ dS =

∫
V

∇ · q dV

∂ρ

∂t
+∇ · (ρv) = 0
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∂e

∂t
+∇ · (ev) +∇ · qc = a

qc = −k∇T, e = ρcT

∇T = i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

ρc
∂T

∂t
+ ρcv · ∇T −∇ · (k∇T ) = a

−∇ · (k∇T ) = a

∇ · ∇T = ∇2T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

−k∇2T = a

− d

dx

(
k

dT

dx

)
= a(x),

−1

r

d

dr

(
rk

dT

dr

)
= a(r)

− 1

r2
d

dr

(
r2k

dT

dr

)
= a(r)

dq

dx
= a(x) q(x) = −kdT

dx

1

r

d(rq)

dr
= a(r), q(r) = −kdT

dr

1

r2
d(r2q)

dr
= a(r) q(r) = −kdT

dr

r = xi + yj + zk, r = |r| =
√
x2 + y2 + z2, r̂ =

r

r
.

∇T (r) =
dT

dr
r̂

∇ · [q(r)r̂] =
1

r2
d

dr

[
r2q(r)

]
.

q(r) =
Q0

4πr2
r̂.

T (r) =
Q0

4πkr

q(r) =
Q0

4π|r− r0|2
r− r0
|r− r0|

T (r) = T∞ +
Q0

4πk|r− r0|
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q(r) =
∑
i

Qi

4π|r− ri|2
(r− ri)

|r− ri|

T (r) = T∞ +
∑
i

Qi

4πk|r− ri|∫
C

f · dr =

∫ t2

t1

[
fx(x(t), y(t), z(t))

dx

dt
+ fy(x(t), y(t), z(t))

dy

dt
+ fz(x(t), y(t), z(t))

dz

dt

]
dt

∇× f =

(
∂fz
∂y

+
∂fy
∂z

)
i +

(
∂fx
∂z
− ∂fz
∂x

)
j +

(
∂fy
∂x
− ∂fx

∂y

)
k

∇× f =

∣∣∣∣∣∣
j j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∫
S

(∇× f) · n̂ dS =

∫
C

f · dr

φ = −
∫
C

f · dr

φ(rB)− φ(rA) =

∫
C

∇φ · dr

f = −∇φ

f = −Gm
r2

r̂

φ = −Gm
r

∇2φ = 4πGρ, g = −∇φ

−ε∇2φ = ρc, E = −∇φ

∇(fg) = (∇f)g + f(∇g)

∇f(g) =
df

dg
∇g

∇ · (φf) = φ∇ · f + f · ∇φ

∇× (φf) = (∇φ)× f + φ∇× f

∇×∇φ = 0

∇ · (∇× f) = 0
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