Exercise answers: EOS 250

(C) Christian Schoof. Not to be copied, used, or revised without explicit written permission from the copyright owner

February 14, 2024
4. (Notes on volume integrals)

1. $f(x, y)=x^{2}+y$ has contours at $y=c-x^{2}$, where c is the contour level. This is a family of parabolas, centred on the y axis, pointing down, shifted up by c.
2. Suppose the contour level c is positive. $f(x, y)=x^{2}+2 x y-y^{2}$ has contours at $(x+y)^{2}=c+2 y^{2}$ where c is the contour level, or equally, where $x=$ $-y \pm \sqrt{c+2 y^{2}}$. The contours have asymptotes that behave as $x=(-1 \pm \sqrt{2}) y$ for $y \rightarrow \infty$, and $x=(-1 \mp \sqrt{2}$. For negative contour levels, we can find a formula for the contour by writing $(y-x)^{2}=2 x^{2}-c$, so $y=x \pm \sqrt{2 x^{2}-c}$. The asymptotes have the same form as for positive c. The contours turn out to be tilted hyperbolae. You can go further: for $c>0$, the contours have turning points at $y=s q r t c / 2, x=\sqrt{c / 2}$ and $y=-\sqrt{c / 2}, x=-\sqrt{c / 2}$, and no contour with $c>0$ passes inside the gap $-\sqrt{c / 2}<x<\sqrt{c / 2}$. Similarly, for $c<0$, the contours have local minima at $y=-\sqrt{-c / 2}, y=\sqrt{-c / 2}$ and local maxima at $y=\sqrt{-c / 2}, y=-\sqrt{-c / 2}$, and no contour passes inside the gap between $-\sqrt{c / 2}<y<\sqrt{c / 2}$.
3. $f(x, y)=x y+x^{2}$ has contours at $y=x+c / x$, where x is the contour level. An earlier homework dealt with plotting $y=x+c / x$: Asymptotes are $x=0$ and $y=x$, with turning points at $x= \pm \sqrt{c}, y=2 \sqrt{c}$ for $c>0$.
4. (Notes on surface integrals) See figure 2
5. (Notes on surface integrals)
6. For $\mathbf{v}=x \mathbf{i}-y \mathbf{j}$, we get

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-y
$$

so, separating variables for both, we get the parametric form for the streamlines

$$
x=x_{0} \exp (t), \quad y=y_{0} \exp (-t)
$$

Figure 1: From left to right: contour plots of $f(x, y)=x^{2}+y, f(x, y)=x^{2}+2 x y-y^{2}$ and $f(x, y)=x y+x^{2}$.

Figure 2: Clockwise, from top left, vector fields in parts 1-4 $(\mathbf{v}=(y-x) \mathbf{i}-(x+y) \mathbf{j}$, $\mathbf{v}=-y \mathbf{i}+x \mathbf{j}, \mathbf{v}=-x \mathbf{i}+y \mathbf{j}, \mathbf{v}=x \mathbf{i}+x y \mathbf{j}$.

Eliminating t by mutliplying both equations together,

$$
x y=x_{0} y_{0}
$$

or

$$
y=\frac{x_{0} y_{0}}{x}=C x
$$

for constant C.
2. For $\mathbf{v}=-y \mathbf{i}+x \mathbf{j}$,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=x
$$

or, writing this as a differential equation for y in terms of x,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{x}{y} .
$$

Separating variables and integrating gives

$$
\int y \mathrm{~d} y=-\int x \mathrm{~d} x
$$

or

$$
\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+K
$$

so

$$
x^{2}+y^{2}=2 K
$$

which is the equation for a circle of radius $\sqrt{2 K}$

Page 4

