Exercise answers: EOS 250

February 27, 2024
2. (Notes on volume integrals) The tetrahedron is bounded by $0<x<1,0<y<x$ and $0<z<1-x$ (draw the tetrahedron to see this, or go through the lecture note procedure for calculating formulas for the planes that define the faces of the tetrahedron). So

$$
\begin{aligned}
\int_{V} \rho \mathrm{~d} V & =\int_{0}^{1} \int_{0}^{x} \int_{0}^{1-x} 1+x y+z \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} \int_{0}^{x}(1-x)(1+x y)+(1-x)^{2} / 2 \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1}(1-x) x+(1-x) x^{3} / 2+x(1-x)^{2} / 2 \mathrm{~d} x \\
& =\left[x^{2} / 2-x^{3} / 3+x^{4} / 8-x^{5} / 10-x(1-x)^{3} / 6-(1-x)^{4} / 24\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3}+\frac{1}{8}-\frac{1}{10}+\frac{1}{24} \\
& \frac{7}{30}
\end{aligned}
$$

3. (Notes on volume integrals) From $\int \rho \mathrm{d} V=\sum \rho \Delta V$, we get $\int 1 \mathrm{~d} V=\sum \Delta V=$ the volume V (you're chopping the volume V, chopping it into little rectangular prisms, calculating the volume of each prism, and adding). For the tetrahedron in the previous example, base area $=1 / 2$, height $=1$, so volume $=1 / 6$. Computing the
integral,

$$
\begin{aligned}
\int_{V} 1 \mathrm{~d} V & =\int_{0}^{1} \int_{0}^{x} \int_{0}^{1-x} 1 \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} \int_{0}^{x} 1-x \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} x(1-x) \mathrm{d} x \\
& =\left[x^{2} / 2-x^{3} / 3\right]_{0}^{1} \\
& =\frac{1}{6}
\end{aligned}
$$

as required.
Also $\int_{V} \rho_{0} \mathrm{~d} V=\rho_{0} \int_{V} 1 \mathrm{~d} V=\rho_{0} V$. This is the high school formula for mass - which is therefore just a special case of the non-high school formula.
6. (Notes on surface integrals) We have $\mathbf{q}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ and the surface given by $z=h(x, y)=\cos (x) \cos (y)$, its projection bounded by $0<x<\pi / 2,0, y<\pi / 2$. We therefore get

$$
\frac{\partial h}{\partial x}=-\sin (x) \cos (y), \quad \frac{\partial h}{\partial y}=-\cos (x) \sin (y)
$$

while
$q_{x}(x, y, h(x, y))=y, \quad q_{y}(x, y, h(x, y))=-x, \quad q_{z}(x, y, h(x, y))=z=\cos (x) \cos (y)$
For reference, note that by integration by parts

$$
\begin{aligned}
\int u \cos (u) \mathrm{d} u & =u \sin (u)-\int \sin (u) \mathrm{d} u \\
& =u \sin (u)+\cos (u)
\end{aligned}
$$

Hence the surface integral is

$$
\begin{aligned}
\int_{S} \mathbf{q} \cdot \hat{\mathbf{n}} \mathrm{~d} S & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \cos (x) \cos (y)+y \sin (x) \cos (y)-x \cos (x) \sin (y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{\pi / 2}[\cos (x) \sin (y)+\sin (x) y \sin (y)+\sin (x) \cos (y)+x \cos (x) \cos (y)]_{y=0}^{y=\pi / 2} \mathrm{~d} x \\
& =\int_{0}^{\pi / 2} \cos (x)+\frac{\pi}{2} \sin (x)-\sin (x)-x \cos (x) \mathrm{d} x \\
& =\left[\sin (x)-\left(\frac{\pi}{2}-1\right) \cos (x)-x \sin (x)-\cos (x)\right]_{x=0}^{x=\pi / 2} \\
& =1+\left(\frac{\pi}{2}-1\right)-\frac{\pi}{2}+1 \\
& =1
\end{aligned}
$$

(Note that this could have been done more easily, by symmetry under exchanging x and y you can tell that

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x) y \cos (y) \mathrm{d} y \mathrm{~d} x=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} x \cos (x) \sin (y) \mathrm{d} y \mathrm{~d} x
$$

and therefore the integral is more simply

$$
\int_{S} \mathbf{q} \cdot \hat{\mathbf{n}} \mathrm{~d} S=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \cos (x) \cos (y) \mathrm{d} y \mathrm{~d} x=1 .
$$

